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1. INTRODUCTION

The application of feed-forward active techniques to the control of sound has to date
mostly been limited to cases where there is a single well-defined primary source. The classical
problem of plane waves of random sound propagating down a duct is one such case; the field to
be controlled can be characterised by the use of a single detection sensor in the duct on whose
output signal a feed-forward conwoller can operate [1]. Similarly, problems of deterministic
sound fields such as those associated with engine "boom” in automotive interiors (2] or propeller
induced cabin noise in aircraft [3) have well-defined primary sources. Here we address the
problem of sound fields generated by sources whose origin is less well-defined, . Such instances
arise, for example, in the case of tyre or wind noise in road vehicles or boundary layer noise in
aircraft. In these cases it is far less easy to define a single detected signal which will characterise
the offending signal and on which a feed-forward controller can operate. One is faced with
characterising the offending sound field with multiple detected signals, obviously placing
detection sensors in locations where they are most likely 1o sense the outputs of the multiplicity of
primary sources contributing 10 the sound fields.

In this paper we address the muli-channel feed-forward contro] problem and determine the
solution for the optimal matrix of filters which operates on a multiplicity (K) of detected signals to
produce the outputs of a number (M) secondary sources and thereby minimise the sound field at
(L) error sensors.  The problem is firsiy dealt with in the frequency domain where we impose no
constraint of causality on the control filters. The results of this analysis will give approximare
solutions for the maximum performance of the controller in cases where the time taken for sound
1o propagate from the detection sensors to the error sensors is sufficient 10 ensure that the impulse
response of the optimal control filters is substantially causal. In any event, the results derived
will establish an absolute upper bound on the controller performance for a problem with Eiven
detected signals and error signals associated with the primary field. The results therefore have
considerable practical utility. We also deal with the problem in the time domain and restrict the
control filters to have impulse responses which are both causal and finite. It is demonstrated thar
the problem can be formulated in classical Wiener-Hopf tenms and the solution for the optimal
controller is expressed in terms of the coefficients of 2 matrix of digital FIR filters. The
appropriate generalisation of the LMS-based stochastic gradient algorithm formulated by Elliott ez
al [4] also follows from this analysis. Some slight modifications to the analysis are incorporated
10 enable the cfficient numerical solution 10 the equations and thus again provide a useful starting
point for the analysis of the potential for active control in any given practical problem,
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3. THE UNCONSTRAINED OPTIMAL SOLUTION

Firstly we will deal with the problem in the frequency domain. This enables the
derivation of the optimal reductions in level that can be achieved when using filters which are nat
constrained to be causal. It is useful both in this case and in the causally constrained case (dealt
with below) 1o work with a modified form of the basic block diagram. The general problem is
depicted in Figure 1. We assume that there are a discrete number P of uncorrelated primary
sources whose outputs arc represented by the vector Z. The signals due 1o the primary sources
are wansmitted via the transfer function matrix A and detected by L error sensors whose outputs
are represented by the vector d. Note that in addition to the sound due to the primary sources,
the sensors may be prone to measurement noise represented by the vector na. The sound due 10
the primary sources is also transmitted via the transfer function matrix B and detected by K
detection sensors whose output signals are represented by the vector X. Note that these signals
may also contain measurement noise represented by the vector n1. Thesc signals are passed
through a matrix of filters G to produce the vector y of signals input to M secondary sources.
These signals may also be fed-back via the transfer function matrix F and result in the corruption
of the signals from the detection sensors. We will assume that F can be determined from
measurements on the system and set out (0 determine the optimal form of the filter matrix G by
firstly determining the optimal form of the filier matrix H. The latter is defined as the filter
matrix whose input is the signal vector X and whose output is the signal vector y (see Figure .
Once H is determined then, in principle, if F is known, G can be determined and has the
structure illustrated in Figure 2. This is readily demonstrated using manipulations in the
frequency domain. We may write

y = Gx + GFy _ (1}

where x and ¥y are vectors of Fourier wransforms of the input and output signals and F and G
are frequency response function matrices. It follows that

y = [I - GFI'1Gx @)
where I is the identity matrix and therefore that
H={I-GFI'G (3

This expression can be used to deduce G and it follows, after some rearrangement, that the
expression for G may be written in the alternative forms

G=HU[I+FH]"1=[I+ HF}H 4)

which suggests the structure iflustrated in Figure 2. (Proof of the second equality in equation (4)
follows readily frem successive pre-multiplication by (I + HF) and post-multiplication by
(I + FH)). This amounts 1o a filter implementation which ensures the cancellation of any
feedback signals. Note thatif H is constrained to be causal (as in the case dealt with later) then
since in any physical system F must be causal, it is evident from Figure 2 that G will then also
be causal.  (The stability of G is not however guaranteed.) Henceforth we will proceed to
determine the optimal filter H and assume that in practice the problem of feedback can be dealt

678 ¥ Proc.|.0.A. Vol 12 Part 1 (1990)




Proceedings of the Institute of Acoustics

ACTIVE CONTROL OF RANDOM SOUND

with using this approach. There is of course a large class of problem in active noise control in
which F is zero and the determination of the optimal value of H is all that is required.

The problem can thus be represented in the form illustrated in Figure 3. The matrix C is’

the matrix of electroacoustic transfer functions relating the M secondary source input signals y to
the L signals d. This vector represents the signals produced by the secondary sources at the L

error sensors.  The error signals are thus defined by e =d + d. Before proceeding further we
undertake another rearrangement of the block diagram that is illustrated in Figure 3. Again,
working in the frequency domain we firstly write

y:Hx R a=Cy . (5)

and expand these expressions in terms of the columns hy of H and the rows ¢;T of C. This
gives )

T
;T
y =[hy hy ... hg]x d=|." |y . (6)
e T
The signal at the I'th error sensor can be written as
d; =c/Ty = ¢T[hix) + hox ..... hgxg) )

which is a scalar quantity which can be transposed to give

8, =h;Texy 4+ haTexs + ... hxTexk (8)

This shows that the block diagram of Figure 3 may be rewritten in the form depicted in Figure 4.
The latter shows that the I'th contribution to the vector d may be written in terms of the "filtered
reference signals” rjmk. These are the signals generated by passing the k'th detected signal xg
through the transfer function ¢;n which comprises the ,m'th element of the matrix C. We will
find it convenient to work with these filtered reference signals and further define the composite
vectors

CiX] :
::; Cix2 ‘
h= . ) RIGIE 9
hk XK

where h is now a vector which contains all the elements of the matrix H.
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We now seek to determine the optimal vector h of filters which ensures the minimum
value of the sum of the power spectral densities of L error signals. Thus we define a cost
function given by :

L L lim 1 . :
Jo= [Elsel e = IEI T—soo TC] C[] (10)

where ¢; is the Fourier transform of the error signal evaluated over some finite duration T.
Here we assume that all the signals dealt with are stationary random processes and the expectation
operator refers to an ensemble average. Thus the true power spectral density of the signals are
derived only from averaging over the ensemble of records of infinite duration.  This should be
borne in mind when using the results derived below in practice, since practical estimates of the
true power spectrum are necessarily based on time averaging over a number of records of finite
duration. Since we assume a linear superposition of the primary and secondary sound fields we

may put e;=d; + 3{ and since we may use the modified block diagram to write
& =r;Th=hTr, . an
the expression for the cost function reduces to -

Llim -
Jo= X
=1

T H T (@ + e’ + /™| (12)

Since the vector h comprises the frequency response functions of the (linear, time invariant)
filters to be determined, use of the expectation operator shows that the expression for J reduces
to the Hermitian quadratic form given by

Jo=hHAh + hHb + bHh + ¢ a13)

where H denotes the Hermitian transpose and the matrix A, vector b and scalar ¢ are defined
by

Ae phm E{—l-r'rT b=§“m —l-r‘d] (14)
IEIT—-)oo THH 1=1T—-)°° TH G
L jim 1 .. L

T T-+°°E[T < d'] = AU 4

The latter can be recognised as the sum of the power spectra of the signals produced at the error
sensors by the primary field alone. The optimal value of the filter vector h and the
corresponding minimum value of the sum of the error sensor power spectra are thus given by

ho=-Alb Jog=c¢ - bHA-Ib (16)
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The condition for the existence of this minimum is that A be positive definite. Itis clear that in
the absence of the primary field (i.e., all d; are zero) then the sum of the power spectra due 10
the secondary sources alone is given by hHAh,  This will clearly be greater than zero for all
non-zero values of h provided all the elements of the vector x of detected signals are non-zero.
This therefore defines a sufficient condition for the positive definiteness of A and the existence of
a unique minimum of J. Equations (14), (15) and (16) thus define the optimal values of the filter
vector h (and thus the optimal values of the elements of the filter matrix H) and also the
maximurm reduction of the chosen cost fonction that can be achieved. These equations constitule
one of the principal results of this paper. To evaluate these optimal results, access is required to
both the filtered reference signals Timk and the primary field signals d;. In general, the former
require a knowledge of both the detected signals xx and the wransfer functions ¢jm, although in
several dspecial cases we shall show below that a knowledge of the wansfer funciions cym is not
required. : .

3. RESULTS FOR A SINGLE DEg'ECST(])ON SENSOR AND SINGLE ERROR
ENSOR

In this case we have a filter H, a single transfer function C and a single filtered reference
signal r. The mawix A reduces to the scalar given by

A=$1NE{%*{| = Sn (19)

and is therefore the power spectral density of the filtered reference signal. The vector b also
reduces to the scalar given by -

lim 1 _ -
o] = sa

and is the cross power spectral density between the filtered reference signal and the eror signal.
Note that we may 2Iso write

lirn

S = T30 E[IT(xC)*(xC ] = §,,IC12 (19)
. ‘

S = s E[%("C)*d] = SaC* (20)

Thus the optimal filter may be writien as

-5 _ Sxa '
Ho=- 5, =" 5uC @

and the corresponding minimum value of the power spectral density of the error signal reduces to
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S_’.Iﬂflﬂ = $*xa5xd 22)
If we write Jg = Saq as the value of the cost function due to the primary field only, then we have

i 2
Jog _ ., MSud® _ .
Ia ! SxaSad ! szd : @3

where ¥xd is the coherence between the signal from the detection sensor and the signal from the
emor sensor due to the primary field and measurement noise. This result gives an extremely
useful means of easily assessing the potential for active control in any given situation. The
coherence (or at least an estimate of the coherence) is readily computed using modem spectrum
analysers. Thus, given a signal from a detection sensor (typically placed close 10 a primary
source) and a signal from an error sensor (placed at the position where reductions in level are

sought) the computation of 10 logiof! - ¥xa)! gives the best reduction in level (in decibels) of
the error signal that could possibly be produced by the action of active control. This result has
the attraction that it can be derived without implementing active control, but it should be
emphasised that it places an upper bound on the achievable performance of a controller, it

assumes the filter is constrained to have neither a causal nor a finite impulse response,

4. RESULTS FOR MULTIPLE DETECTION SENSORS AND A SINGLE
ERROR SENSOR

In the case of a random sound field generated by, for example, a number of independent
primary sources, we may seek to minimise the power spectrat density at one location by operating
on K detection signals. One would clearly seek to ensure that the detected signals berween them
were able 1o characterise the output of the primary sources. In this case the matrix A canbe
writien as ' .

I ‘
A=g 1-:[‘T(c:)-(0x)T] = IC2Syy 24

where Syx is the matrix of cross-spectra of the signals from the detection sensors. The vector b
reduces 10

"
b = 1‘.':“ E{%(Cx)*d] = C*8yd 25)

where the vector Ssg is the vector of cross-spectra between the detected signals and the signal at

the error sensors due to the primary field and measurement noise. The solution for the optimal
filter vector thus reduces to

11
ho=-5S, S (26)
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and the minimum value of the error sensor spectral density is given by
H -1
Jeag = Sdd - sdenSxd 2D

Again putting Jg = Sg4, this expression can be writnen in non-dimensional form as

=1-12y (28)

where Tz is the muliiple coherence function between the detection sensor inputs and the output
from the single error sensor.  Again it can be shown that this value varies between zero and unity
and its estimation in a given practical situation immediately evaluates the potential for aclive
control. A concise description of the multiple coherence function and its use in the analysis of
random signals is given by, for example, Newland [5].

5, THE CAUSALLY CONSTRAINED OPTIMAL SOLUTION

The minimisation of the sum of the time averaged squared error signals using a matrix of
filters H whose elements are constrained to have causal impulse response functions has been
dealt with in a previous paper [6]. In that work it was shown that the vector of causal impulse
response functions associated with the composite vecior h defined above must satisfy a marix
Wiener-Hopf integral equation. This equation is difficult to solve analytically except in certain
cases (see, for example, the problems addressed in reference [7]). Here we constrain the optimal
filter to have a finite as well as a causal impulse response and analyse the problem in discrete time.
This is therefore the case that is of most relevance in practice, where the controller is implemented
as a matrix of digital FIR filters. .

Thus, working in discrete time, the n'th sample of the fth signal a; can be written as the
convolution

& () = WTO)rin) + AT(rn - 1)+ . hTA- Dryln - 1+ 1) (29)

where we have defined a composite tap weight vector and a sampled reference signal vector
respectively by

hT() = [h11(Dh21()-..aMa)h12()h22G)...hm20)! -.. Ihikhak (). hp ()] (30)
riT(n) = [ra(mry (). (o)irn2(ndrzz(m).. vzl e g ()2 (n)...omk ()] €2}

Note that each filter in the matrix H has thus been assumed 1o have an impulse response of [
samples in duration, We now define a further composite tap weight vector w which consists of

all the I 1ap weights of all the L x M filters such that
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wT = [hT(0) hT() ... hT(T - 1)) (32)
This enables us to write the L'th order vector of sampled error signals as

e(n) = d(n) + R(n)w (33)
where the matrix R(n) is defined by

T rTe) ... oTed+) ]
raTm) rT(n-1) ... rT(n-[+1)

R(m) =] . (34}
I T P T % 15

We now define a cost function given by the sum of the L time averaged error signals such that
J = EfeT(n)e(n)) (35

where E denotes the expectation operator then substitution of equation (33) and subsequent
expansion shows that

Jy = wTE[RT(m)R(n)lw + 2w TE[RT(n)d(n)] + E{dT{n)d(n)] {36)
This is a quadratic function of the tap weight vecior w which is minimised by the optimal vector

wg = -{E[RTmRM))-{E[RT(n)d(n)}} (37
and has the corresponding minimum value given by

10 = E[dT(m)d(n)] - {ERTmd(n)]) T(EIRTmR @) HERT(m)dMm)]}  (8)

The mamix E{RT(n)R(n)] which has to be inverted is clearly of high order, but by using the
definition of the composite tap weight vector given by equation (32) this matrix can be shown to
have a block Toeplitz structure and use can be made of recursive algorithms for its efficient
inversion {8]. Note that the definition of the composite tap weight vector given here is nof the
same as that adopted in reference [4].

A standard technique for finding the minimurn of 2 quadratic function of the type defined
by equation (36) is to use the method of steepest descent where one finds the minimum of the
fonction iteratively by updating the value of the tap weight vector by an amount proportional to the
ngative of the gradient of the function. Thus in this case, the tap weight vecior is updated in
accordance with
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w(k + 1) = w(k) - aE[R(n)e(n)] (39}

where E[R(n)e(n)] is the gradient of the quadratic function and k denotes each iteration step,
In the derivation of the LMS algorithm [9] and in its gencralisation given by Elliott et a! [4] itis
assumed that we can approximate the gradient of the function by its instantaneous value and thus
update the coefficients on a sample by sample basis in accordance with

win + 1) = w(n) - aR(n)e(n). {40}

This therefore generalises the LMS algorithm for use with not only multiple secondary sources
and error sensars but also with multiple detected signals. Such an algorithm has clear practical
applicability in the active control of sound ficlds generated by multiple primary sources.

6. CONCLUSIONS

The multi-channe] feedforward active control of sound has been dealt with from a general
theoretical viewpoint. An analysis of the problem in the frequency domain yields a general
solution for the optimal matrix of control filters when there is no constraing of causatity on the
impulse responses of the filiers. Some very useful results are given in particular special cases.
In the single channel case, with a single detection sensor and a single error sensor, the maximum
reduction in the power spectral density of the error signal that can be achieved is shown to be
solely determined by the ordinary coherence function relating the detection and error signals.
With multiple detection and a single error sensor, the maximum reduction is equivalently
determined by the multiple coherence function. The problem has also been analysed in the time
domain and the optimal controller has been determined in terms of the coefficients of a matrix of
digital FIR fillers. The problem has been formulated to allow its efficient numerical solution. In
addition, a generalisation has been presented of the stochastic gradient algorithm enabling the
rapid adaptation of the control filters to their optimal solution.
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