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1. INTRODUCTION

The application of feed-forward active techniques to the control of sound has to date
mostly been limited to cases where there is a single well—defined primary source. The classical
problem of plane waves ofrandom sound propagating down a duct is one such case; the field to
be controlled can be characterised by the use of a single detection sensor in the duct on whose
output signal a feed-forward controller can operate [1]. Similarly, problems of deterministic
sound fields such as those associated with engine "boom" in automotive interiors [2] or propeller
induced cabin noise in aircraft [3] have well-defined primary sources. Here we address the
problem of sound fields generated by sources whose origin is less welLdefined. _ Such instances
arise. for example. in the case of tyre or wind noise in road vehicles or boundary layer noise in
aircraft. In these cases it is far less easy to define a single detected signal which will characterise
the offending signal and on which a feed-forward controller can operate. One is faced with
characterising the offending sound field with multiple detected signals. obviously placing
detection sensors in locations where they are most likely to sense the outputs of the multiplicity of
primary sources contributing to the sound fields.

In this paper we address the multi—channel feed-forward control problem and determine the
solution for the optimal matrix of filters which operates on a multiplicity (K) of detected signals to
produce the outputs of a number (M) secondary sources and thereby minimise the sound field at
(L) error sensors. The problem is firstly dealt with in the frequency domain where we impose no
constraint of causality on the control filters. The results of this analysis will give approximate
solutions for the maximum performance of the controller in cases where the time taken for sound
to propagate from the detection sensors to the error sensors is sufficient to ensure that the impulse
response of the optimal control filters is substantially causal. In any event, the results derived
will establish an absolute upper bound on the controller performance for a problem with given
detected signals and error signals associated with the primary field. The results therefore have
considerable practical utility. We also deal with the problem in the time domain and restrict the
control filters to have impulse responses which are both causal and finite. It is demonstrated that
the problem can be formulated in classical Wiener-Hopf terms and the solution for the optimal
controller is expressed in terms of the coefficients of a matrix of digital FIR filters. The
appropriate generalisation of the LMS-based stochastic gradient algorithm formulated by Elliott et
al [4] also follows from this analysis. Some slight modifications to the analysis are incorporated
to enable the efficient numerical solution to the equations and thus again provide a useful starting
point for the analysis of the potential for active control in any given practical problem
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2. THE UNCONSTRAINED OPTIMAL SOLUTION

Firstly we will deal with the problem in the frequency domain. This enables the

derivation of the optimal reductions in level that can be achieved when using filters which are not

constrained to be causal. It is useful both in this case and in the causally constrained case (dealt

with below) to work with a modified form of the basic block diagram. The general problem is

depiCted in Figure i. We assume that there are a discrete number P of uncorrelated primary

sources whose outputs are represented by the vector 1.. The signals due to the primary sources

are transmitted via the transfer function matrix A and detected by L error sensors whose outputs

are represented by the vector d, Note that in addition to the sound due to the primary sources.

the sensors may be prone to measurement noise represented by the vector n2. The sound due to

the primary sources is also transmitted via thetransfer function matrix B and detected by K

detection sensors whose output signals are represented by the vector it. Note that these signals

may also contain measurement noise represented by the vector In. These signals are passed

through a matrix of filters G to produce the vector y of signals input to M secondary sources,

These signals may also be fed—back via the transfer function matrix F and resultin the corruption

of the signals from the detection sensors. We will assume that F can be determined from

measurements on the system and set out to determine the optimal form of the filter matrix G by

firstly determining the optimal form of the filter matrix H, The latter is defined as the filter

matrix whose input is the signal vector x and whose output is the signal vector y (see Figure 1).

Once H is determined then. in principle, if F is known. G can be determined and has the

structure illustrated in Figure 2. This is readily demonstrated using manipulations in the

frequency domain. We may write

y = Gx + GFy
(1)

where x and y arevectors of Fourier transfonrts of the input and output signals and F and G

trices. It follows that
are frequency response function ma

y = [I - art-16x
(2)

where I is the identity matrix and therefore that

H =[I-GF]"G
(3)

This expression can be used to deduce G and it follows. after some rearrangement. that the

expression for G may be wrinen in the alternative forms

G = int + Fin-I = [I + HF1-1H (4)

which suggests the structure illustrated in Figure 2. (Proof of the second equality in equation (4)

follows readily from successive pre-multiplication by (I + HF) and post«multiplication by

(I + FH)). This amounts to a filter implementation which ensures the cancellation of any

feedback signals. Note that if H is constnined to be causal (as in the case dealt with later) then

since in any physical system I" must be Causal. it is evident

be causal. (The stability of G is not however guarant

determine the optimal filter H and assume that in practice the problem of feedback can be dealt  
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with using this approach. There is of course a large class of problem in active noise control in
which F is zero and the determination of the optimal value of H is all that is required.

The problem can thus be represented in the form illustrated in Figure 3. The matrix C is-
the matrix of electroacousu'c transfer functions relating the M secondary source input signals y to
the L signals at This vector represents the signals produced by the secondary sources at the L
error sensors. The error signals are thus defined by e = d + 3. Before proceeding further we
undertake another rearrangement of the block diagram that is illustrated in Figure 3. Again,
working in the frequency domain we firstly write

y=Hx _ d=Cy ‘ (5)

and expand these expressions in terms of the columns h of H and the rows CIT of C. This
gives | ’

ciT
C21-

y=ih1h2whxlx d= . y

cLT

The signal at the I'th error sensor can be written as

(ii = «My = c1T[h1xl + hzxz thK]

which is a scalar quantity which can be transposed to give

3! =hrTczxr+ hzTcrxz+---- thCIXK (8)

This shows that the block diagram of Figure 3may be rewritten in the form depicted in Figure 4.
The latter shows that the hh contribution to the vector d may be written in terms of the "filtered
reference signals" rimkr These are the signals generatm by passing the k'th detected signal xk
through the transfer function cm which comprises the I,m'th element of the matrix C. We will
find it convenient to work with these filtered reference signals and further define the composite
vectors

81x1
ht czxz

h {in} I r1: I

hK '
CIXK

where h is now a vector which contains all the elements of the matrix H.

Proc.l.O.A. Vol 12 Pan 1 (1990) 



 

Proceedings of the Institute of Acoustics

ACTIVE CONTROL OF RANDOM SOUND

We now seek to determine the optimal vector h of filters which ensures the minimum

value of the sum of the power spectral densities of L error signals. Thus we define a cost

function given by

L Llim 1 , l )

Jar—Izlselel—FIT “Elite! cI (0

where c] is the Fourier transform of the error signal evaluated over some finite duration T.

Here we assume that all the signals dealt with are stationary random processes and the expectation

operator refers to an ensemble average. Thus the true power spectral density of the signals are

derived only from averaging over the ensemble of records of infinite duration. This should be

borne in mind when using the results derived below in practice, since practical estimates of the

true power spectrum are necessarily based on time averaging over a number of records of finite

duration. Since we assume a linear superposition of the primary and secondary sound fields we

may put e1: d1+dt and since we may use the modified block diagram to write

3, =nTh=th . (ll)

the expression for the cost function reduces to

L 1' .
”" (d: + hTrt)‘(dt + l’lTh)] (12)

Since the vector h comprises the frequency response functions of the (linear, time invariant)

filters to be determined. use of the exchIation operator shows that the expression for Jo, reduces

to the Hermitian quadratic form given by

J... = hHAh + We + th + c (13)

where H denotes the Her-mitian transpose and the matrix A. vector b and scalar c are defined

by
L lim 1 . L lim 1

_ _ T = _ eA — IE1 PM E[Tr1 r1 ] b (El Ta“ T r, m] (14)

1- lim 1 L

C =1)=:1'1'-”"E[T d' d'] = {Elsd‘d’ as)

The latter can be recognised as the sum of the power spectra of the signals produced at the error

sensors by the primary field alone. The optimal value of the filter vector h and the
corresponding minimum value of the sum of the error sensor power spectra are thus given by

ha = -A-1b 10,0 = c - DHA'lb (15)
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The condition for the existence of this minimum is that A be positive definite. It is clear that in

the absence of the primary field (i.e., all d: are zero) then the sum of the power spectra due to

the secondary sources alone is given by hHAh. This will clearly be greater than zero for all

non-zero values of It provided all the elements of the vector x of detected signals are non-zero.

This therefore defines a sufficient condition {or thepositive definitencss of A and the existence of

a unique minimum of J. Equations (14). (15) and (16) thus define the optimal values of the filter

vector h (and thus the optimal values of the elements of the filter matrix H) and also the

maximum reduction of the chosen cost function that can be achieved. These equations constitute

one of the principal results of this paper. To evaluate these optimal results. access is required to

both the filtered reference signals rlmk and the primary field signals d{. In general. the former

require a knowledge of both the detected signals X1; and the transfer functions elm. although in

several special cases we shall show below that a knowledge of the transfer functions aim is not

required.

3. RESULTS FOR A SINGLE DETECTION SENSOR AND SINGLE ERROR
SENSOR

In this case we have a filter H. a single transfer function C and a single filtered reference

signal r. The matrix A reduces to the scalar given by

“flutfivq = 5,, (19)

and is therefore the power specu-al density of the filtered reference signal. The vector b also

reduces to the scalar given by v

lim 1

b=T—)w 7'
‘d] = s“. I (18)

and is the cross power spectral density between the filtered reference signal and the error signal.

Note that we may also write

Iim
s,.=T E[%(xC)*(xC)] = sutth (l9)

lim
sm=T tafirxcw] = sxdc" (20)

Thus the optimal filter may be written as

_ Est. 411.5
HO"Sn—'suc (2‘)

and the corresponding minimum value of the power spectral density of the error signal reduces to
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S‘ S S‘lm=SM-—anl:d=SM-—§g%d (22)     

   If we write 1.; = SM as the value of the cost function due to the primary field only, then we have

      l 2
.20- _'_5adL__
1d —1 suSM-l'szd

(23)

      

where 72”] is the coherence between the signal front the detection sensor and the signal from the

This result gives an extremely
error sensor due to the primary field and measurement noise.

useful means of easily assessing the potential for active control in any given situation, The

coherence (or at least an estimate of the coherence) is readily computed using modem spectrum

analysers. Thus. given a signal from a detection sensor (typically placed close to a primary

source) and a signal from an error sensor (placed at the position where reductions in level are

sought) the computation of 10 long - yam)‘l gives the best reduction in level (in decibels) of

the error signal that could possibly be produced by the action of active control. This result has

the attraction that it can be derived without implementing active control. but it should be

emphasised that it places an upper bound on the achievable performance of a controller, it

assumes the filter is constrained to have neither a causal nor a finite impulse response.

         

        

       
  

       

4. RESULTS FOR MULTIPLE DETECTION SENSORS AND A SINGLE

ERROR SENSOR

In the case of a random sound field generated by. for example. a number of independent

primary sources, we may seek to minimise the power spectral density at one locmion by operating

on K detection signals. One would clearly seek to ensure that the detected signals between them

were able to characterise the output of the primary sources. In this case the matrix A can be

written as

 

  

        
        

   
r r

A = rilficn'mfl] = ICI2Su (24)

-spectra of the signals from the detection sensors. The vector b  
where S“ is the matrix of cross

reduces to    

    n —““‘ tfitcm] =c‘sra (25)
_T-)¢!

  
of cross—spectra between the detected signals and the signal at

field and measurement noise. The solution for the optimal  where the vector sxdis the vector

the error sensors due to the primary

filter vector thus reduces to

 

        

(26)  
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and the minimum value of the error sensor spectral density is given by

H -l
Imo = Sad - sldsxxSxd (27)

Again putting Jd = Sad. this expression can be wrinen in non-dimensional form as

H I
I s S sxd

fiQ=I—J—‘§§—-=l-n2m (28)

where 111d is the multiple coherencefunction between the detection sensor inputs and the output
from the single error sensor. Again it can be shown that this value varies between zero and unity
and its estimation in a given practical situation immediately evaluates the potential for active
control. A concise description of the multiple coherence function and its use in the analysis of
random signals is given by. for example, Newland [5].

5. THE CAUSALLY CONSTRAINED OPTIMAL SOLUTION

 

The minimisation of the sum of the time averaged squared error signals using amatrix of
filters H whose elements are constrained to have causal impulse response functions has been
dealt with in a previous paper [6]. In that work it was shown that the vector of causal impulse
response functions associated with the composite vector It defined above must satisfy a matrix
Wiener-Hopi integral equation. This equation is difficult to solve analytically except in certain
cases (see. for example. the problems addressed in reference [7]). Here we constrain the optimal
filter to have a finite as well as a causal im ulse response and analyse the problem in discrete time.
This is therefore the case that is of most re evance in practice. where the controller is implemented
as a man-ix of digital FIR filters. ,

  
   
  
  
  
  

    

      
  

Thus. working in discrete time. the n'th sample of the rth signal a; can be written as the
convolution

31m) = hT(0)r((n) + hT(l)r1(n - l) + hT(I - l)r1(n - 1+ 1) (29)  
   
 
  
     

where we have defined a composite tap weight vector and a sampled reference signal vector
respectively by

hTG) = [htt(i)h21(i).~-hMt(i)|h12(i)h22(i)---hm<i)| lhtt<(i)hztt(i)t--hMK(i)|]

  

      
 

 

    

(30)

(31)

Note that each filter in the matrix H has thus been assumed to have an impulse response of 1
samples in duration. We now define a further composite tap weight vector w which consists of

all the [tap weights of all the L x M filters such that

nT(n) = [m1(n)rm(n)...rlM1(n)lr‘n2(n)r122(n)...rm2(n)l".erK(n)r12K(n)...r,MK(n)l]   
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wT = [hT(0) hTU) hTU - 1)]

This enables u_s to write the L'th order vector of sampled error signals as

e(n) = d(n) + R(n)w

where the matrix R(n) is defined by

r1T(n) r1T(n-1) r.T(n-l+1)

r2T(n) rzT(n-l) .. .4 r17(n-I+1)

R(n) =

rLT(n) rLT(n-t) ..,.' rLT(n-I+I 1)

We now define a cost function given by the sum of the L time averaged error signals such that

Jl = E[eT(n)e(n)]
(35)

where E denotes the expectation operator then subStitution of equation (33) and subsequent

expansion shows that

11 = wT‘E[RT(n)R(n)]w + 2wTE[RT(n)d(n)] + E[dT(n)d(n)] (36)

This is a quadratic function of the tap weight vector w which is by the optimal vector

W0 = -lElRT(n)R(n)l l" lEIRT(n)d(n)]l (37)

and has the corresponding minimum value given by

Jo = EIdT(n)d(n)l - {EIRT(n)d(n)] )TKEIRT(H)R(D)]}" (EIRT(n)d(n)]l (33)

The matrix E[RT(n)R(n)] which has to be inverted is clearly of high order. but by using the

definition of the composite tap weight vector given by equation (32) this matrix can be shown to

have a block Toeplitz structure and use can be made of recntsive algorithms for its efficient

inversion [8]. Note that the definition of the composite tap weight vector given here is not the

same as that adopted in reference [414

A standard technique for finding the minimum of a quadratic function of the type defined

by equation (36) is to use the method of steepest descent where one finds the minimum of the

function iterativer by updating the value of the tap weight vector by an amount proportional to the

ntgative of the gradient of the function. Thus in this case, the tap weight vector is updated in

accordance with
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w(k + 1) = w(k) - aE[R(n)e(n)] (39)

where E[R(n)e(n)] is the gradient of the quadratic function and k denotes each iteration step.

In the derivation of the LMS algorithm [9] and in its generalisation given by Elliott at a! [4] it is

assumed that we can approximate the gradient of the function by its instantaneous value and thus

update the coefficients on a sample by sample basis in accordance with

w(n + I) = w(n) - uR(n)e(n). (40)

This therefore generalises the LMS algorithm for use with not only multiple secondary sources

and error sensors but also with multiple detected signals. Such an algorithm has clear practical

applicability in the active control of sound fields generated by multiple primary sources.

6. CONCLUSIONS

The multi-channel feedforward active control of sound has been dealt with from a general

theoretical viewpoint. An analysis of the problem in the frequency domain yields a general

solution for the optimal matrix of control filters when there is no constraint of causality on the

impulse responses of the filters. Some very useful results are given in panicular special cases.

In the single channel case. with a single detection sensor and a single ermt' sensor, the maximum

reduction in the power spectral density of the error signal that can be achieved is shown to be

solely determined by the ordinary coherence function relating the detection and error signals.

With multiple detection and a single error sensor, the maximum reduction is equivalently

determined by the multiple coherence function. The problem has also been analysed in the time

domain and the optimal controller has been determined in terms of the coefficients of a matrix of

digital FIR filters. The problem has been formulated to allow its efficient numerical solution. In

addition, a generalisation has been presented of the stochast gradient algorithm enabling the

rapid adaptation of the control filters to their optimal solution.
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FIGURE 2. The structure of the filter man-ix G once the matrix H has
been determined. This amounts to a filler su'ucmre which ensures the
cancellation of feedback from the secondary sources to the detection sensors.

N0“: 013! if H is causal. G will be causal. The smallin ofG is not in general
guaranteed.
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FIGURE 4. 11:: equivalent block diagram showing me generaxion of LhE] a.
secondary signal with Lhe operation of the clemean of H and C reversed.
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