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1. INTRODUCTION

This paper considers methods of modelling piezoelectrie transducers

vibrating underwater. The finite element method is widely wused for
modelling wvibratien problems. However not many finite element programs can ‘
:handle either piezoelectric materials or fluid-structure interaction. The

present paper describes extensions to the PAFEC finite element program to
‘incorporate both these features.

2. PIEZOELECTRIC FINITE ELEMENTS

FPiezoelectric materials have a coupling between the mechanical and
electrical properties; deforming a piece of piezoelectriec material will
cause a potential difference and conversely applying a potential difference
will cause a deformation. Thus it is necessary to solve the elastic and
eléctrostatic equations simultaneously.
The wvirtual work density is

?
W= uF -éq (1)

where u is the displacement, F the force, ¢ the potential and q the charge
density. The constitutive equations are

D=¢e"¢+ EE (2)
where ¢ 1is the stress, € the strain, E the electric field, D the flux
density, ¢ the elastic stiffness tensor and § the dielectric stiffness

tensor. After applying the principle of virtual work, the finite element
equations can be derived as in ref. [l}. These have the form
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where {U} is a vector of displacements and (¢} is a wvector of electric
potentials.

There are analogies bétween the mechanical and electrical quantities.
Displacement corresponds to electric potential, force to charge and strain
to electric field. A connection to earth at a point can be modelled by
setting the electric potential freedom to zero and removing the row and
column from the stiffmess and mass matrices and force vector. The effect of
an electrode can be modelled by repeating the electric freedoms lying on
this equipotential surface by collapsing the rows and columns in the
stiffness and mass matrices and force wvector.

The electric freedoms can be eliminated by static condensation on equation
(3), giving

U SR G IR N @)
where |

LR N

(F1 = (Syu] - [Sypl [Sgel” [Squl (5)

i
[

(F) + [S,4] [S4e)7 (Q

In order to perform this operation some electrical restraint must be
applied to ensure that [Sgg] is not singular. It is frequently advantageous
to use OGuyan reduction or static condensation to eliminate some mechanical
degrees of freedom, reducing from large sparse matrices to small dense
_ matrices, see ref. [2].

For harmonic vibrations at frequency w, equation (4) simplifies to

(s®] - 2D ) - Y (6)
Natural frequencies and mode shapes can be found by setting [F*l to zero
and solving the eigenvalue problem.

For a transducer with 2 electrodes, solving the eigenvalue problem with one
electrode earthed and the other electrode free (open circuit) will give the
constant current drive resonances. Solving the eigenvalue problem with both
electrodes earthed (short circuit) will give the constant voltage drive
resonances, which will also be the antiresonances in the constant current
drive case.
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4. FLUID EQUATIONS

We now consider the problem of determining the pressure distribution in an
infinite region of compressible fluid surrounding a vibrating surface. The
pressure P satisfies the wave equation

vo - v/l zo | | )

where c is the acoustic wavespeed. For steady state harmonic problems, to
which attention in this paper is confined, this reduces to the Helmholtz
equation :

v2pri?p=o (8)

where k=w/c is the acoustic wavenumber, and @ is the frequency in
radians/sec. The boundary condition

Pﬂﬂ = -ic.:pV (9)

, where p 1is the denmsity, enforces continulty of normal velocity V on the
vibrating surface. Finally the equation

lim x|P,, -ikP| = 0

T (10)

is needed to ensure that the pressure field consists only of outgoing
waves.

5. SURFACE HEIMHOLTZ FORMULATION

By using the divergence theorem it can be shown that the pressure at a
peint x satisfies the equation _

e fz(p(z)g-“(_v) D) EEDIP (5 )ay) (11)
where
g(x,y) = exp(-ikr)/4rr 12y .

with r=|x-y|, is the free space Green’s function and 47¢ is the solid angle
in the exterior region. To obtain numerical solutions the surface [ can be
divided into patches over which the pressure P and its normal derivative
gsn are interpolated using the same shape functions [N]. Thus equation (11)
ecomes

a

1}
€P(x) - o g ([N] ar (P} ~ - N 13
Z 3 Z:fstldrir,n1 (13)

=1 P‘ i=1 Pi
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where P, is the ith patch on the boundary element and n is the number of
patches. Taking x to be at each nodal point in turn, a set of linear
"equations are obtained which can be written in matrix form as

[H] (B} = [G] (B,) (14)

There are some difficulties in evaluating some of the terms in equation
(13). When the patch P; contains the collocation point x the integrand
becomes singular. The integral still converges to a finite result, but
Gaussian Iintegration 1s wunsuitable for evaluating it. The integral can be
evaluated by a variety of methods. In the PAFEC system the method of Lachat
and Watson [4&4] is employed. The patch is decomposed into triangles with
the collecation point at the apex. A unit square is transformed onto the
triangle such that one side collapses to the collocation point. The zero in
the jacobian cancels with the singularity in the original integrand, giving
a bounded function, when integration is performed over the unit square. 1In
the PAFEC acoustics system the 3D boundary elements are constructed from
generally curved 8-noded quadrilateral and 6-noded triangular patches. The
shape functioms |[N] can be chosen either the same as the quadratic
functions used to Interpolate the geometry, or to be constant. In the
latter case the collocation points are taken to be at the centroid of each

‘patch. There is also an axisymmetric acoustic boundary elément constructed’

from 3-noded quadratic line patches.

If the surface normal velocities and hence normal pressure gradients are
known, then by equation (14) the surface pressures can be determined, and
by using equation (ll1) for x in the fluid the surrounding pressure
distribution can be found, Unfortunately equation (l4), the surface
Helmholtz formulation, fails at certain characteristic frequencies. This
can be seen from fig. 5 where the ratio of pressure over its normal
derivative for a pulsating spherical surface has been computed using the
mesh shown in fig. 6. A modified Green's function was used to take account
of the remaining parts of the spherical surface not modelled. The
numerical solution gives good results except at certain .frequencies where
it goes quite wrong. The reason for this failure can be understood by
considering the interior problem. Internal regions can also be modelled by
the boundary element method; an equation similar to (l4) is obtained except
that [H] is opposite in sign and also modified on the diagonal. However the
interior acoustic problem with the Dirichlet boundary condition has
unbounded resonances, and thus at these frequencies [G], common to both
internal and external problems, must be singular. As the external problem
does not have an unbounded resonance [H] must also be singular at the same
frequency. At nearby frequencies the matrices are ill-conditioned and
inacecurate’ results are obtained. The problem lies mnot in the original
radiation problem, equations (8), (9) and (10}, but in the integral
equation (1l1).
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6. MORE SOPHISTICATED BOUNDARY ELEMENT METHODS

The failure of the surface Helmholtz formulation occurs because equation
(11), with x restricted to the surface, does not have a unique solution at
the eritical frequencies. Two boundary element methods, CHIEF and CONDOR,
are commonly used to overcome this problem.

CHIEF, combined Helmholtz integral equation formulation, was  first
introduced by Schenck [5]. The equations of the surface Helmholtz
formulation are augmented by some additional equations, taking x at some
interier points in equation (11), when ¢ =0. The resulting overdetermined
system is solved by least squares methods. This set of equations produced
has a unique sclution provided that not all the interior ccllocation points
lie at nodes of the interior eigenfunctions. At higher frequencies these
interior nodes become more numerous and the difficulty is knowing how many
interior points to select and where to position them. In the PAFEC system
the CHIEF methed can be used with all the acoustic boundary elements.

CONDOR, composite outward normal derivative overlap relation, was first
introduced by Burton and Miller [6]. This method combines the surface
Helmholtz formulation, and its normal derivative

€p x) = A‘P(z’g.n@.mg " & a(x) Py’ (15)

It can be shown that if a complex combination of these two equations is
taken, then the resulting formulation does mnot suffer from any
characteristic  frequencies. The, difficulty in the CONDOR method is
egvaluating the highly singular integrals. Burton and Miller [6]} suggest a
regularization method expressing the highly singular operator as the
product of two weakly singular operators. This leads toe a double surface
integration and requires much computation. In the PAFEC acoustic system a
method suggested by Meyer et al. [7] is employed. This is based on the
relation

ar= (@) - ) (ikF
fr(m teyntp T f( ¥) - P(x)) 5 rniy T P(E)./-Ex. n, (ikg ar
r r r (16)

When the boundary element is composed of constant pressure patches, the
highly singular part vanishes when integrating over the collocation point
patch,

7. EXAMPLE RADIATION. PROBLEM

The problem of determining the far field radiation pattern for a
cylindrical curved surface vibrating in an infinite external . fluid was
considered. The cylinder was taken to be of radius lm and length 4m, see
fig. 7. The curved surface was assumed to vibrate with unit normal velocity
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and the flat ends to remain stationary. The surrounding fluid was taken to
be water. An alternative numerical solution is available, due. to Williams
et al. {8]). The mesh used to analyse this problem consisted of 12 constant
pressure patches, modelling half axially and 30 degrees circumferentially,
see fig. 8. The CONDOR formulation was used. Figures 9, 10 and 11 show the
normalized far field radiation patterns for k=1, k=2 and k=5. There is
agreement with the alternative solutionm.

8. COUPLED FLUID-STRUCTURE PROBLEMS
To couple structural finite elements and an acoustic boundary element some
coupling matrices [E] and [T} must be evaluated, where [E] (U} gives the
set of normal displacements on the fluid mesh, and -[T]T(P} gives the
forces on the structural mesh. Details of the construction of these

matrices is given in ref. [9].

The coupled set of equations can now be written in the form

[Qss) [Qsblf }iw) (gs)
{Qbs] [Qbl] }LE) (gb) (17)
where

[st] - [8] -mz [M]

[Qap) ~ (T)T

[Qs] = w2, (6] [E)T

(Qp] = (H]
(F}) (18)

[gs}
{(gp} = (0}

Equation (17) can be solved for the structural displacements and the
pressures on the fluid-structure interface. These results can then be used
with equation (1l1) to determine the pressures within the fluid.

9. TRANSDUCER VIBRATING IN WATER

The method outlined in the previous section was used to analyse the ring
transducer of fig. 1 vibrating in water. For the structure a mesh of twice
the mesh density of that shown in fig. 2 was used and an acoustic boundary
element of 40 constant pressure patches, matching face to face with the
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structural mesh, was used to model the fluid. The CONDOR method was
employed. Figs 12 and 13 show the pressure distribution 1lm away £from the
transducer for the two frequencies of 3000 Hz and 7000 Hz. Agreement is
good except in the axial direction.

10. CONCLUSIONS

1t has been shown that the finite element method can be used to model
vibration of pilezoelectric materials and the boundary element method can be
used to solve radiation problems. These techniques have been successfully
incorporated inte the PAFEC finite element program. Comparison between F.E,
and experimental results is good except in the axial direction, where there
is as yet an unresolved discrepancy.
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