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This paper considers methods of incorporating fluid loading and piezoelectric
effects into finite element analyses. These two phenomena do not interact
directly, only via the mechanical vibrations of.’ the structure, and hence it is
sufficient to consider separately how these effects are included,

The finite element method is a-well established method for analysing structural
vibrations. If the structure is surrounded by a compressible fluid then the
surface Vibrations will cause energy to be radiated away and'it may be important
to determine the surrounding pressure field. Furthermore. if it is a dense
fluid, such as water, surrounding the structure then the pressure field will
cause significant loading on the structure affecting the way it vibrates. In
general the main effects are to introduce damping and increase the inertia of
the structure, lowering the resonant frequencies.

Finite element methods cannot easily be used to model an infinite region of
fluid. Boundary element methods are more suitable. For these only the wet
surface of the structure needs to be modelled. Some simple fluid-structure
interaction approximations permit the fluid degrees of (freedom to be easily
eliminated. Better methods lead to a. complex-dense set of equations for the
fluid domain which must be solved in parallel with the structural equations.

Piezoelectric materials have a coupling between the mechanical defamation and
the electric field. Modelling.‘ this with finite elements is relatively
straightforward.
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2. Basic Fluid Eguations

Before considering fluid-structure interaction methods in detail it is necessary
to consider some elementary fluid equations. Attention is restricted to an
inviscid compressible fluid such that fluid particles vibrate with sma11
amplitude and without any netflow.

The equation of motion of a small fluid particle is

'u ‘
as - - 2?: + a (1)

where p is the density, 3 is the displacement, P: is the pressure, 3 is the
gravity vector and . is used to denote temporal differentiation. Restricting
attention to the oscillatory part of the pressure P, the excess above
hydrostatic pressure, gives the equation -

p E " ' V P (2)

The compressibility of the fluid is governed by the equation I

v_E.'.
(3)

W
I
N

uhere K is the bulk modulus. i

Eliminating the displacements 3 between equations (2) and (3) gives

2 _ u .-V P 31.2? 0

C

where c2 — K/p.

This is the wave equation. which occurs in many branches of physics. For steady
state problems, vibrating at a fixed circular frequent u the wave a u ti
reduces to the Helmholtz equation,. y q a on

v22 + k2 p - o . (5)

where kis the wave number (=w/c)

In some applications excitation is applied to the fluid domain by a point source
or a plane wave, coming from infinity. This incident wave is scattered by a
submerged structure, which is caused to vibrate and radiate waves into the fluid
domain. For some fluid-structure interaction methods it is useful to separate
the pressure field into components as

P-PI+PR+Pr (6)
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where-PI is the incident pressure. which would result if the structure were
removed, PR is the reflected pressure which would be the additional contribution
caused by a rigid structure and P, is -the radiated pressure caused by the
vibration cf the structure‘s surface. The scattered pressure P5 is the sum of
reflected and radiated fields.

3. Fluid Structure Coupling I

In the following sections the problem of a structure vibrating in an infinite
region of fluid is considered, see figure 1. It is assumed that the structure
is modelled using the finite element method. as in figure 2. For the moment it
will-‘be assumed that the fluid region is modelled by a boundary element, as in
figure 3, when only the fluid structure interface needs to be discretized. In
order to couple these two regions together it is necessary to represent the
effect of'the surrounding pressure field as ‘a set of nodal forces on the
structural mesh and to compute the normal displacements at the nodes on the
fluid mesh for a given structural deformation.

As derived in a previous lecture, the equations of motion for a finite-element
mesh is »

m] (143} [S] (u) - m + my (7)

Where (u) is a column vector of structural displacements, [M] and [S] are the
mass and stiffness matrices, (F). is a vector of mechanical point forces and (Ff)
isva'vector 'of forces due to the fluid. An expression ,for (Ff) in terms of the
nodal pressures on the fluid mesh can ,be derived by considering the work done by I
a virtual set'of displacements on the fluid-structure interfacel‘. Taking the
normal 5 positive into the fluid, thework done by the fluid on the structure is
given by ' - ' ' -

wa- f-unpdt‘, rt

- - mT f-[NslT 2T [mar m
r . V’

e - (u)? .mT (P) (a)

where the coupling matrix [T] is defined by I

m 4 [MT 2 [N51 dr (9)
l"

and [N] are the acoustic shape _functions_and
functions. 'The work" can also be expressed as (u)
an arbitrary virtual displacement

£Ns] are the.structura1 shape
(Ff). Since this is true for

(Ff) - - {TJT m (10)
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To complete the coupling between the structural and fluid domains a

transformation matrix [B] is required such that [Elr (u) gives the normal
displacements on the fluid mesh. .

The boundary element shape functions [N] are used for interpolating both
pressures andvnormal displacements and hence an alternative way of computing the
work done by a set of virtual displacements is as

W = f un P (if
I"

= - MT [E] ftNlT [N1 arm (11)
r

— - MT [E] [A] (P)

Where the area matrix [A] is defined by

[A] -= [[an [N1 dr (12)
r

Hence one way of calculating [E] is by

[E] -= [TIT [Al-1 (13)
Alternatively the normal displacement at a. fluid node can be computed by
interpolating the structural displacements with [N5] and'using the local normal
2, and [E] can be constructed in a more direct manner. It is sometimes ~
preferable to use equation (13) as this leads to symmetric equations for some
fluid—structure interaction techniques. '

1+. I Asmtotic Fluid—Structure Interaction Approximations

This section considers some approximate fluid-structure interation methods which
are simple and can be easily implemented in finite element programs. but which
only apply to restricted situations. In order to explain the range of
applicability it is necessary to define the acoustic and structural wavelengths.
For a steady state problem vibrating at frequency f (— w/21r ), the acoustic
wavelength is defined by

)‘ac " c/f . ' (14)

and is the distance between neighbouring peaks for a plane wave propagating in
the fluid. The structural wavelength As: is the distance between neighbouring
peaks on the deformed structural surface, see figure lo.

When the structure is vibrating such that

>‘ac‘<< >‘st . (15)
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The structure's surface is behaving locally in a one-dimensional manner, like a
piston. In mathematical terms this is explained as follows. The wave equation
(4) can be rewritten in the form

§3£+fl+52P-.1_82=0 '
asf' as a? c2??? ‘1“
where 51 and 52 are tangential directions to the surface. The first two terms. . . . 2 ‘2
in equation (10) have order of magnitude 4 1r 17/,“t and the last two are of order

a ,Yzlb/Aaz‘2 . Thus at high frequency, when equation (15) is satisfied, the wave.

equation reduces to

2 _ 2 =

n

This one dimensional‘wave equation has the general solution

P -= f(n 4- ct) + g(n - ct) ‘ (18) I ‘

The first term is the incident wave, travelling towards the structure, and the
second term is the scattered wave. Hence the scattered wave must satisfy

.31: = ' 961s . ' . (19)
at ' an . ' . »

and thus, after using equation (2)

I
.

P5 =- pc u'Sn I I . (20)

the plane wave approximation is derived‘ If there' is no incident wave_ c1115“
this can be rewritten in matrix terms as,

(P) =pc (um) ' I (21)-
I

=pc [E]T (u)

Where (un) is the vector of normal displacements on the fluid mesh and (u) are
the structural displacements. Using equations (7), (10) and (13), the. fluid
degrees of freedom can be eliminated! giving '

[M] (II) + [c] (G) + [s] (u) = m ' (22)
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where the damping matrix is given by

[C] we [a] {A} [HT (23)

Thus the effect of the plane wave approximation is to introduce a fluid damping

matrix into the structural equations. It must be remembered that this

approximation is only valid for high frequency motions, see equation (15). For

lower frequencies the plane wave approximation overdamps the solution.

The other extreme of low frequency motion, when

has >> )‘St (24)

can be treated in a different manner. In this case the first two terms in

equation (16) are dominant and so the wave :equation reduces to Laplace’s
equation,

v2 P=-0 ' (25)

Note that when the surrounding fluid is incompressible this equation is

satisfied exactly. This can be solved for the pressure distribution outside

some closed surface 1‘, using boundary clement techniques. From the divergence

theorem it can be proved that

(2(5) -_ (My) 33 - g 3(1)) dl‘(x) ' (26)
r F)! any

where e — 1 if 5 lies within the fluid. It - 1/2 if is at a smooth point on the
boundary and e- 0 if 35 lies within 1‘ , and g is the free space symmetric
Green’s function,

3(r-x)=1/(4wls-xl) » _ (27)

The pressure P and its normal derivative 1’,n are interpolated using the same
shape functions [N], and so equation (26) can be rewritten in a discretized form
as,

n n '
my - §__g [N1 arm - - g [N] dr (r. )2 any g: f n (28)

[5| pi U Pi

Where P1 is the i th patch on the boundary element and n is the number of
patches. Taking x to be at one of the nodal points a 'linear equation relating
the nodal pressures and pressure derivatives is obtained. Taking x to be at
each nodal point in turn, a set of linear equations are obtained which can be
written in matrix form as

(HM?) - [G] (Pun) (29)
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Using equation (2) this can be written in the form
:1

[A] (P) -= [Hf] (um) (30)

where [Hf] is known.as the fluid mass matrix and is given by

Inf] =p[A] [fil'l [G] (31) I

DeRuntz and Gears [I] argue that only the symmetric part of [Hf] is important.
Using [E]T to relate displacements on the two meshes and from equations (7%
(10) and (13). - - ' I

II

([M] + [Madh (u) +-[S] (u) = (F) . > . (325

where the added mass matrix is-defined by I

[Mad] -= {E} [Mfl [EJT - v . (33)

Thus the effect of a surrounding incompressible fluid is to increase the inertia
of the structure without introducing any radiation damping.

The natural frequencies and mode shapes for a structure vibrating in an
incompressible fluid can be determined by solving the eigenvalue problem

([5] «:2 ([M] + (Maw) (u) - (0) m)

Table 1 gives a comparison between an f.e/b.e solution for the mesh in figure 5
and a theoretical solution for the axisymmetric-vibration modes of a spherical'
shell [2]. The spherical shell was 1m in radius, 0.02m in thickness and made of
mild steel. The surrounding incompressible fluid was taken to have a density of
1000 kgm'3- '

Table 1. Natural Frequencies of a Spherical Shell

 

.Number of

meridional

alf‘waves

   
1329.71 1392w55
614.05 605.59
768.61 765.43
824.16 813.10
893.76 877.83
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5. Doubly Asmtotic Approximations

The fluid-structure interaction approximations of the last section are valid in

certain frequency ranges. Doubly asympt0tic approximations are formed by
combining low and high frequency approximations to produce methods of greater

applicability. The first order doubly asymptotic approximation (DAAl) is

{Mg} m +pC {A} (P) - pC [Ms] (um) ‘ (35)

At low frequencies the second term dominates the left hand side and equation
(35) degenerates to the virtual mass approximation. At high frequencies the
first term is dominant and DM1 becomes the plane wave approximation. DAA]. can
be constructed from the virtual mass and plane wave approximations by using the
method of matched asymptotic expansions. Felippa [3] has produced a second
order doubly asymptotic approximation (DMZ) by combining a second order low
frequency approximation, the correcced virtual mass approximation, with a second
order high frequency approximation, the curved wave approximation. A simplified
form of this is

mi] (1;) +pc [A] m +pC [:21 [A1 (2)

= pc [Mf] tun) +96 [9] [Mf] (un (35)

where

[n] =1” [A] [Hfl‘l + c [K] I ‘ (37)

and [dis a diagonal matrix of curvatures.

DAAs can be used for shock'analysis. When an incident wave strikes a submerged
structure there is initially high frequency vibration, but later on, when the
structure is vibrating freely in the fluid, the behaviour is of a low frequency
nature. DAAl generally predicts initial response well, but overdamps and the
solution is inaccurate at later times. Figure 6 illustrates the problem of a
step incident wave striking a spherical shell. Huang [4] has considered this
problem and produced a comparison of theoretical exact and theoretical DAAl
solutions which show the overdamping of the DAA. Figure 7 shows an f.e./b.e.
mesh that was used to predict the response, and a comparison with Huang's
theoretical DAAl solution is given in figure 8.

The accuracy of the DAA2 method for harmonic problems is considered in figure 9
which reproduces a comparsion between a theorectical exact and a theoretical
DAA2 solution for the problem of a spherical shell excited 'by harmonic end
forces, shown in figure 10, taken from [2]. DAAZ works well apart from at
resonances and anti—resonances. However, DMZ can be used to accurately predict
where resonances will occur.
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To solve for structural and fluid response simultaneously' using finite and

boundary element methods, equations (7) and (36) can be combined to give

[st] [st] (u, = (gs)
(38)

[Qbs] [be1 (P) (31,).

where

[055] - [st-M [M]

[stl = mT _

[Q55] =pc m3 tug] [BIT w? [m [Hf] [E]T)

[be1 = ~02 mg] no (mm + [my [An I (39)

(gs) = m I

(51,)“ (0)

Once the component matrices [Hf]. [A], '[S] etc have been calculated the

equations in (38) can be rapidly formed, and if a staggered solution procedure

can be used so the equations are efficiently solved then a rapid frequency scan

can be made to determine the resonant frequencies. However, as noted above, the

DAAZ method is not suitable for determining the resonant responses. This Shauld

be done using the exact formulations of the next section. These methods are

slower in forming and solving the equations and are not as suitable for scanning

the entire frequency.range.

The problem of a_spherica1 shell excited by harmonic point forces, shown in

figure 10, was solved using the mesh of figure 5. The shell was taken to be

made of mild steel and of thickness 0.02m.‘ The surrounding fluid was taken to

be water. A comparison of the computed and analytical solutions is given in

figure 11.

6. Exact Boundary Element Technigues

The previous two sections have considered approximate boundary element methods

for modelling fluid-structure interaction. Alternative techniques which are

exact; within the accuracy of the discretization. are alSo available, tut are

generally more complicated. or have other difficulties. ’ "

Transient problems can be solved using Kirchhoff's retarded potential

formulation [5]. This iS'a mathematical statement of Huygen's principle of wave

propagation. However, its numerical implementation requires vast amounts of

computer time and storage. and it is not'considered in further detail here.
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For harmonic problems "exact" methods are more widely used. The Helmholtz

equation (5)‘can be solved directly using boundary element techniques. In this

case the fundamental solution is - .v

g(§.1x)= exp (-ik Ia - xi) / (4r [3 - xi) . J (an

Equation (26) still holds. and as in the solution of Laplace's equation, it can
be discretized as equation (28), giving a linear equation relating the nodal

pressures and normal pressure derivatives. To properly describe the fluid

structure interaction m such equations are needed. These are usually obtained
by taking 5 in turn to be at each of the m nodal degrees of freedom.. This is
known as the surface Helmholtz integral formulation and produces a matrix
equation as in (29) except that [H] and.[G] are now complex matrices.

An alternative, indirect approach, calledthe simple source formulation is based
on representing the pressure in the external region as due to a distribution of
point sources of density a‘ over the surface I‘ .

P (a) =fv(x) g (r. 1) dl" (x) (Al)
I‘

Letting 35 tend to a point on 1" gives the equation

em' (a) -.= —_. a/2 y fflx) grim 4r m ' ' (42)
Equations :(Al) and (A2) can, be' discretized, interpolating the source 'density
using, the shape functions [N]. This gives a pair of matrix equations '

m a [a] m r " ' . . " j ((43)‘

(Pm) = [M (a) - I » -. -. - (44)

and by eliminating the source Edensity a- a_ direct relationship between't'he
pressure and its normal derivative is obtained. ' '

Unfortunately the two above methods fail to work at certain frequencies. Copley
[6] proves that these are the interior Dirichlet eigenvalues for the,surface l" .
This is caused by a difficiency in the integral equation representation rather
than any problem with the Helmholtz equation. Equation (26) fails to have a
unique pressure distribution for a specified velocity, and hence pressure
gradient distribution. causing the matrices [H] and [G] to be singular at. these
particular frequencies. For». the simple source method, there is no suitable
source density satisfying equation (41). However, the Helmholtz equation (5)
does have a unique solution for the pressure distribution whichhsatisfies the
Sommerfield radiation condition, ie._ decays. to zero at infinity, for a'given
velocity distribution specified on 1‘ . On'a finite precision computer the
equations become ill—conditioned producing inaccurate results as the frequency
approaches a critical frequency. '
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This is illustrated in figure 12 where equation (29) has been solved for the

mesh of figure 13, modelling a uniformly pulsating sphere, by setting P,n e. 1

and comparing the computed pressure with the theoretical result.

A number of different methods are available for overcoming these difficulties.

Schenck [7] has suggested a method called CHIEF (Combined Helmholtz integral

equation formulation). The equations of the surface Helmholtz formulation are

augmented with a few equations taking 1!. interior to I‘ and e -= 0 in equation

(26), and the resulting overdetermined system of linear equations are solved in

a least squares manner. This works well provided the interior points chosen for

E avoid the nodes of the interior eigenfunctions. Burton and Miller [8] have

proposed an alternative method called CONDOR (composite outward normal

derivative overlap relation). A complex linear combination of equation (26) and

its normal derivative is used. Difficulty occurs in this method because of the

highly singular integrals which need to be evaluated.

Once a boundary integral method has been chosen, giving an equation relating the

pressure and its normal derivative, as in equation (29), this can be

straightforwardly coupled to the finite element method, if 1‘ contains an elastic
structure. From equation (2) the normal pressure derivatives can be expressed
in terms of the structural displacements as

(r...) “002;? [EJT (u) (as)

and this leads to a set of equations as in (38) but where

[Qbs] = 'w2p [c1 [EIT

[bel = (H1 (46)

Once the equations have been solved and the pressure and velocity are known on

F the pressure can be determined anywhere in the fluid using equation (26) and
taking 5 = 1. Figures 14 and 15 show results for the vibrating spherical shell
problem of figure 10 obtained by coupling the surface Helmholtz integral

formulation to the finite element method for the mesh shown in figure 5.

The boundary element methods considered so far have all been local methods, ie.
the variables to be solved for have beennodal pressure at specific points on
F . Other more global methods exist. where an origin is chosen within F and the

exterior pressure distribution is expressed as a sum of contributions from

spherical harmonics [9]. The combination factors for these harmonics are S? lved

for directly.

The methods described above have all assumed that the fluid surrounding the

structure is linear and homogeneous.
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If this is not true, eg. cavitation may occur in a transient'analyses, or if
there are variations in the density of the fluid near the structure, the methods
may be adapted by using finite elements to 'model the nearby fluid [10]. Beyond

this the fluid is again modelled by the appropriate boundary element techniques,
and so assumed to be linear and homogeneous.

7. Piezoelectric’ Finite Elements

Piezoelectric materials have a coupling between the mechanical and electrical
properties; deforming a piezoelectric crystal will cause a potential difference

and vice versa. Thus it is necessary to solve the elastic and electrostatic
equations simultaneously.

The virtual work density is

w— uTF-ttq (47)

Where (5 is the electric potential and q the charge density. The constitutive
equations are

eE -

D-eT +52 (48)

Where (1 is the stress,g the strain, E the electric field, D the flux density, c
the elastic stiffness tensor, e the piezoelectric stiffness tensor and E the
dielectric stiffness tensor. After applying the principle of virtual work the
finite element equations can be derived as is done in ref [11],

mu) [0] (£1) +. [5ou [qu m a m . -
[mu [0]] 3(6); [Esau] magi-l m; {40); (49)

where

[$qu =. fv [BuiT {a} [nu] av:
{sum = [BuJT [e1 [13¢] av
[Saul = j; [EMT [ethBuldv

[saw = [V IB¢1T [8] {13¢} dv V (50)
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!

\<

[B¢] = BIN]
751?
gin]

Y

BIN]
a z (51)

 

[N] are the shape functions of the isoparametric element.

There are analogies between force and charge and between displacement 'and
electric potential. In both cases the electrical quantity is one tensorial rank
lower than the elastic quantity. The effect of an electrode can be modelled by
repeating the electrical freedoms for nodes lying on some surface, by collapsing
the rows and columns in the stiffness matrix. A connection to earth is modelled '
simply by restraining the appropriate electrical freedoms.

The electric freedoms can be eliminated by static condensation on equation (49)
giving

“4*; (21) + [5*] (u) = (F*) ' (52)

whe:e

[n*1 = [Mun]

[5*] = [sun] — [su¢1 [s¢¢1-1 ts¢u1

-[F*1 - (F) + [su¢1 IS¢¢]‘1 (q) ‘ (53)
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Note that in order to perform this operation some electrical restraint must be
applied, to ensure that [SQQ] is not singular.

For harmonic vibrations at circular frequency equation (52) simplifies to

([S*J - a: 2 (M*l) (u) = (F*) V (54)

Natural frequencies and mode shapes can be found by setting (F*) to zero and
solving the eigenvalue problem.

8 . Conclusions

Techniques for applying fluid loading and incorporating piezoelectric effects in
a finite element model have been considered. "

For cases of low or high frequency vibration simplified approximate techniques
are available which give added mass or added damping. More sophisticated
approximate techniques can be used in the frequency domain to scan through and
determine the resonances. Exact methods must be used for analysis near
resonances if accurate results are to be obtained. However, boundary element
methods based directly on the Helmholtz equation are computationally more
expensive as all the boundary integrations must be performed for each frequency.
All these methods , with the exception of the low frequency virtua1 mass
approximation, complicate the solution procedure as the equations require
complex arithmetic. -

Examples have been presented for computations on spherical shells, where an
analytical solution is available. These are not typical of transducers, but.
generally the effect of fluid loading will be greater for shell structures than
for solid structures. Thus the methods described in the sections above are
applicable to transducers.

Piezoelectric elements have been considered. These can be straightforwardly
incorporated into a finite element‘system. ‘
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FIGURE 3
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FIGURE 5
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FIGURE '8
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COMPARISON OF EXACT AND DAAZC RADIAL UELOCITY

AT THE POINT OF EXCITATION FOR A SPHERICAL SHELL

SUBMERGED IN WATER EXCITED BY HARMONIC END FORCES
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FIGURE 11

COMPARISON OF RADIAL UELOCITIES AT THE POINT
OF EXCITATION ON A SUBMERGEO SPHERICAL SHELL
EXCITED BY HARNONIC END FORCES FOR ANALYTICAL
DAA2C AND F.E./B.E. DISCRETIZEO SOLUTION
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FIGURE 12
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FIGURE 13
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FIGURE 14

COMPARISON OF RAOIAL UELOCITIES AT
POINT OF EXCITATION FOR A SPHERICAL
SHELL IN WATER EXCITED BY HARMONIC
END FORCES
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FIGURE 15

COMPARISON OF PRESSURES AT R:1O
ON AXIS OF EXCITATION FOR A

SPHERICAL SHELL IN WATER EXCITED

BY HARMONIC ENO FORCES
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