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1. INTRODUCTION

Underwater acoustic scattering problems can be analysed using the acoustic boundary element technique, which has

been around for some time now. The rapid increase in affordable computer power and the emergence of

commercially available software have made this method available to many analysts. However, based on the criteria

of three quadratic elements per wavelength, the number of nodes required on a boundary element modelling V

scattering by a 3D body increases quadratically with the frequency analysed. The time to form the equations and

direct solution methods increase as the square and cube of the number of nodes respectively. Thus there is a fairly

strict upper limit on the frequency which can be analysed for a given structure using a particular computer.

This paper describes a more efficient technique which is available for scattering by axisymmetric structures. The

incident wave is expanded as a Fourier series. Each component is analysed separately using a line element mesh,

rather than a surface mesh, and the full 3D pressure field is obtained by combining the circumferential harmonics.

Using this technique increases the upper frequency limit for axisymmetric structures.

2. ACOUSTIC EQUATIONS

For small amplitude oscillations in an inviscid, irrotational, compressible fluid, with no mean flow the pressure

distribution satisfies the wave equation;

V2 ———=0 (1)

where C is the acoustic wavespeed. For steady state oscillations at circular frequency a), this reduces to the

Helmholtz equation ;

le + kzp = 0 (2)

where k = 2 is the acoustic wavenumber. On a rigid boundary, the condition;

0

0?)
— = 0 (3)
(31

is satisfied. The pressure p can be decomposed as;

P = P: + P, (4)
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where p, is the free field incident pressure and p_’ is the scattered pressure. For external problems, the scattered

pressure field must satisfy the Sommerfield radiation condition;

lim r|%—ilgv,|=0 (5)
r-uo

which ensures that it consists only of outgoing waves.

3. BOUNDARY ELEMENT METHOD

Using the divergence theorem, together with the properties of the free space Green's function;

e—lkr

g(x,,v)=— (6)
~ ~ 47v -‘

where r=1x— y], the Helmholtz formula can be derived.

 

47(5) = Ir[p(g)§:(§q) - g(§,y)%(z))dr(,y) +p,(§) ' (7)

Where 4 71's is the solid angle in the fluid region and n is the normal measured positive into the fluid. To obtain

numerical solutions, the surface 1' can be divided into patches over which the pressure and its normal derivative

6??
b?- are interpolated using the same shape functions [N]. Equation (7) becomes;

amp—i $[Nldl'{p}=-Zn) gtNldl' i +p.(§) (s)
1:] “a7, i=l "‘ a?

where 5,. is the ith patch of the boundary element and m is the number of patches. {1)} and are vectors of

the nodal pressures and pressure normal gradients Taking the collocation point x to be at each nodal point in turn

a set of linear equations ensue, which can be written in matrix form as;

[H]{p} = [G]{%} + {111}  
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When the scattering surface is rigid, as in the problems considered in this paper, this simplifies to;

[H]{p} = {pl} (10)

The surface Helmholtz formulation, described above, works well apart from at a characteristic set of frequencies

which become dense in the higher frequency range. At these critical frequencies, the surface Helmholtz

formulation equations are correct, but they do not possess a unique solution; the matrix [H] is singular and will be

ill-conditioned at nearby frequencies. A number of improved boundary element methods are available which

overcome these difficulties. The method employed for the analyses in this paper is the CHIEF method, first

described by Schenck [l]. The equations of the surface Helmholtz formulation are supplemented by some additional

equations, taking x to be at some interior points in equation (8) The resulting over determined system is then

solved in a least squares sense.

4. FOURIER ACOUSTIC BOUNDARY ELEMENTS

lfthe scattering body is axisymmetric, then the pressure can be expressed as a Fourier series;

p(r, 0,2) = p0(r,z) + i(p;(r,z) cos(m ® +p;,(r,z) sin(m 3)) (11)

The incident pressure field can be similarly expanded. A Fourier expansion for % can be obtained simply by

differentiating equation (1 l) with respect to n throughout. lfthese Fourier expansions are substituted into equation

(7), which is then multiplied by cos(m 0) and integrated from 0: —7r to +n', then only one term remains from

each series. The resulting equation is:

ep;(r,z) = J‘lp;(r',z’)g”—(%’,r-I’—z'l —%(r’,z')gm(r,z,r’,z’))d{(r',z') +p;n(r,z) (12)

where 4 is the curve which generates 1' upon revolution about the axis of symmetry and;

gm (r,z,r',z') = I;:_ncos(m 6V )g(r,o,z,r’, 0,2')d9 (13)

The contour 4' can be broken down into line elements, which are interpolated over using shape functions, and thus

equation (12) can be discretized in a similar form to equation (8) and some matrix equations;

[Harm =[Gm1{%}+{pm} <14)
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assembled as was done with equation (9). For an equivalent level of discretization, the matrices in equation (14)

are much smaller than those of equation (9) and hence much quicker to form and solve. However, this must be

done for suflicient terms in the Fourier series to obtain convergence when summed up in equation (11), Even

taking these multiple solutions into account, the Fourier method should still provide significant time savings.

The new method has the additional advantage ofbeing more robust when using the CHIEF method in the higher

frequency range. It can be proved that the characteristic frequencies at which the surface Helmholtz formulation

fails are the eigenfrequeneies of the interior region with the Dirichlet boundary condition, see Ref [2]. In the higher

frequency range when the eigenfrequencies become dense, a particular frequency being analysed may be close i

enough to many characteristic frequencies to cause a large loss in the rank of the [H] matrix, see Ref [3]. CHIEF

points chosen must avoid the interior nodal surfaces for the eigenmodes of the characteristic frequencies. The i

number of "good" CHJEF points needed to make the boundary element method work is equal to the loss in rank of

the matrices which is not known a priori. Thus in the higher frequenq' range, it is diflicult to know the best

number of internal collocation points to use. However, the characteristic frequencies become dense at a much

slower rate for the axisymmetric Fourier boundary element resulting in a smaller number of "good" CHIEF points

being required.

5, EXAMPLE PROBLEM

The new Fourier acoustic boundary element method was tested by comparison with full 3D analysis results The

test problem was a rigid target consisting of a cylinder with hemispherical endcaps. The cylinder was taken to have

length 4m and radius 1m. The surrounding medium was taken as water, with a speed of sound 1500ms'1. The

incident wave was taken to be at an angle 45“ to the axis of the cylinder, of unit amplitude and at frequency

1500Hz, see figure 1. The phase of the incident wave was chosen such that the free field pressure at the centre of

the cylinder was em.

 

6. RESULTS

The problem described above was analysed using three different meshes. A full 3D analysis was performed using

the halfmodel illustrated in figure 2. This has 655 nodes and is composed of 96 six-noded triangular quadratic

patches and 144 eight-noded quadrilateral quadratic patches. This mesh satisfies the criterion of 3 quadratic

elements per wavelength. Five internal CHJEF points were taken. Two axisymmetric meshes were used. Figure 3

shows the coarse axisymmetric mesh, consisting of 20 three-noded quadratic line patches and containing 41 nodes.

This has the same axial mesh density as the 3D model. The fine axisymmetric mesh was taken to have twice the

mesh density, with 40 quadratic line patches and 81 nodes. Both these models were used with four interior CHlEF

points.

  

  
      

   

   

Figures 4 and 5 show the variation of the magnitude of the Fourier coefilcient at points A and B respectively (see

figure 1) computed using the fine axisymmetric mesh. In both cases, there will clearly be very rapid convergence

of the Fourier series alter the first seven terms. Nine terms would have producedaccuracy of a fraction of a percent.

Figure 6 shows a comparison between the real part of the pressure along the line AC (see figure 1) in the centre of

the shadow zone for the fine axisymmetric and coarse 3D models. Figure 7 gives the same comparison between the

two axisymmetric models. Figures 8 and 9 give the same comparisons for the imaginary part of the pressure.
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All results are in good agreement. Assuming then that the fine axiwmmeu-ic mesh is most accurate, it seems that

the coarse axisymmetric model is slightly more accurate than the 3D model. It is also noticeable that the real part

of the pressure field seems to be more accurate than the imaginary part.

7. CONCLUSIONS

The Fourier acoustic boundary element method has been shown to work and is capable of producing significant

saving on computer time for a full 3D analysis. It does however, require additional post-processing to sum up the

Fourier series.

Further work will include using the Fourier acoustic boundary element method to analyse scattering by elastic

obstacles.
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Figure 3
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Figure 7
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