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1 INTRODUCTION 

The finite element method (FEM)1 is often used for low frequency room acoustic simulation. It is 
possible to model a loudspeaker source explicitly, but this adds complexity to the model creat ion 
and reduces the flexibility of repositioning the source within the room. For an omnidirectional source 
it is straightforward to use an ideal point source, as in ref2. The current work considers some ways 
of extending this to directional loudspeakers. Ideally a set of point sources should be determined,  
such that, in combination, they radiate the same pressure field into 3D space beyond some radial 
distance, as the loudspeaker. One approach would be to start with a set of sources, and adjus t  the 
position, amplitude and phase in an optimization procedure to match the desired radiation pa t tern.  
This paper considers an alternative, directly constructive approach, based spherical harmonics.  

 
 

2 REPRESENTATION BY SPHERICAL HARMONICS 

Spherical harmonics are a functions of position on a sphere defined by a ‘latitudinal angle’ θ varying 
from 0 at the north pole to π at the south pole and ‘longitudinal angle’ φ varying from 0 to 2π around 
the equator. They can be used, together with the associated spherical Hankel functions, to 
characterize a 3D source. The precise definition used for spherical harmonics is not universally 
agreed, differing between disciplines. For the current work the definitions used by Gumerov and 
Duraiswami3 are used together with some of their notation.  
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However ref3 assumes an 
i te −

variation, whereas this paper assumes an 
i te 

time variation. 

 
With the definition (1), the spherical harmonics are orthonormal when integrated over the unit 
sphere S1 , i.e. 
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Consider a setup, as in figure 1, where a finite set of sources and/or vibrating surfaces and 
diffracting edges are radiating into infinite 4π steradian 3D space. The travelling waves within the 
exterior region are outwardly travelling and satisfy the Somerfeld radiation condition.  
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Figure 1, radiation from source contained within spherical surface 
 
For steady state acoustic vibration with wavenumber k , it can be shown using the separabiloity of 

the Helmholtz equation in spherical coordinates, that the pressure field in the region r>R exterior to 

the sphere 
RS  can be represented as 
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where the radial term 
( ) ( )2

nh kr  is a spherical Hankel function. The function ( ), ,m

nS r    defined by 
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satisfies the Helmholtz equation in the exterior region, and will be subsequently referred to as a 
solid spherical harmonic as in ref3. Using the orthogonality of the spherical harmonics in (2), the 

coefficients 
nma  can be determined by 
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for any sphere RS  of radius R containing the sources. Thus if the pressure field, both amplitude and 

phase, is known on a spherical surface surrounding the driver, the solid spherical harmonic 

coefficient components nma can be determined from (5), and if each solid spherical harmonic can be 

approximated by a distribution of point sources then equation (3) can be used to construct a 
representation of the source using a distribution of monopole sources. 
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3 REPRESENTATION BY MONOPOLES 

3.1 Multipole approach 

The term ‘multipole’ is not consistently defined in the literature. In the context of this  paper,  as in 
ref3, multipoles are taken to be Cartesian coordinate derivatives of monopoles. Thus 
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Note that the derivatives are respect to the source position, rather than the receiver position. 
 
It is asserted that each solid spherical harmonic can be expressed as a sum of multipoles, e.g. 
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where 
nmA  is the number of terms in the series, 

nmpc  are the complex coefficients and ( ), ,u n m p  , 

( ), ,v n m p  and ( ), ,w n m p  are the integer orders of differentiation. The assertion is true for the 

case n=0 because 
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Suppose that the assertion is true for n N , for some integer N. It will be shown that the assertion 

is true for 1n N + . This will complete the proof of the assertion by the principle of induction. 

From the book by Gumerov and Duraiswami3, formula (2.2.7) 
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where z is the axial, 0 = , direction and 
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Thus if ,...,N N

N NS S−
 are expressible as a linear combination of multipoles, then 1 1,...,N N

N NS S−

+ +  are 

also expressible in this way. The end terms 
1
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+  can be shown to be of the form of (7) 

using the formulae 
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which can be derived from ref3 formulae (2.2.9) and (2.2.11). Thus every solid spherical harmonic 
can be  represented as a linear combination of multipoles. Each multipole can be represented as a 
linear combination of monopoles, using numerical differentiation. 
 
It should be noted that expressions as in (7) are not unique, because each multipole satisfies  the 
Helmholtz equation, and thus can be expressed as a linear combination of 3 higher order 
multipoles. 
 

3.2 Spherical surface representation 

An alternative approach is to have a distribution of monopole sources over a spherical surface. If 
the source density is given a spherical harmonic distribution on a sphere of radius a 
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then the interior pressure field is a multiple of ( ) ( ),m

n nj kr Y    and the exterior pressure field is  a 

multiple of 
( ) ( ) ( )2
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n n nS h kr Y  = . It can be shown that to achieve an exterior pressure of 
m

nS  

the required source density is given by 
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A method based on this approach, combined with equation (3), should work apart from when 

( ) 0nj ka = . This seems reminiscent of the problem with irregular frequencies for the exterior 

boundary element method4,5. It is suspected that using a source density of 
m

nSY  on a sphere of 

radius a , in conjunction with a source density 
m

niSY  on a sphere of radius 
4

a


−  would eliminate 

this issue. This needs further investigation. 

 
 

4 DRIVER EXAMPLE 

The above theory has been investigated on a simple example comprising of a piston of radius 
0.0225m in the centre of the front face of a cuboid enclosure (front face :0.09m width x 0.08m 
height, depth 0.1m). The piston is prescribed unit amplitude velocity. The surrounding air has speed 
of sound = 340 m/s. The boundary element method was used to compute the radiated sound field 
on a surrounding spherical surface of radius 0.3m, centred on the middle of the pis ton, and used in 

conjunction with equation (5) to compute the solid spherical harmonic components nma . In fact a 

sphere of any radius, containing the source, could be used. 
 
Figure 2 is a graph of the pressure at points 4m from the piston centre. Figures 3 & 4 show the 
pressure and spherical harmonic summations for 4m in front and 4m behind. N is the maximum n in 
the summation of equation (3). Results clearly improve with increasing N. N=3 is accurate up to 
about 1500 Hz. N=12 is accurate up to about 5500 Hz. 
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Figure 2, pressure v frequency at points in horizontal plane 
 

 
Figure 3, pressure on axis and spherical harmonic summations 
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Figure 4, pressure behind and spherical harmonic summations 
 
 

5 SOURCE REPRESENTATION 

The work to date has been testing the multipole approach. The results from the example driver 
above were processed up to 3000 Hz, i.e. with λ=0.1133m. The solid spherical harmonics up to n=3 
were converted to multipoles and subsequently a lattice of monopoles. A spatial difference d=0.02m 
was used for numerical differentiation. Ideally this should be smaller, particularly at the upper end of 
the frequency range. Reducing d would increase the accuracy in exact arithmetic, but in finite 
precision arithmetic the rounding error would increase, particularly for higher order derivatives.  The 
sources were summed at the points 4m in front and 4m behind the piston. The results were also 
computed with the sources in a finite element mesh modelling a 0.08m x 0.08m x 0.08m region of 
space with a 25 x 25 x 25 mesh of quadratic bricks, and surrounded by a boundary element 
extending out to infinity. The finite elements assume a locally quadratic variation of pressure and so 
a fine mesh is needed in the neighbourhood of the monopole sources. 
 
Figure 5 shows the pressure at 4m on axis in front and figure 6 shows the pressure 4m behind. The 
pressure in front is more accurate. The pressure behind only has reasonable accuracy up to 1500  
Hz. 
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Figure 5, pressure 4m on axis evaluated by sources 
 

 
Figure 6, pressure 4m b4ehind piston evaluated by sources 
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6 CONCLUSIONS 

Solid spherical harmonics can be used to characterize a directional driver. Higher orders are 
needed at higher frequencies. It should be easier to include directional sources in a boundary 
element model, as the solid spherical harmonics can be directly included as right hand side terms in 
the equations. Using the multipole-based approach within a finite element model as  tested so far 
has been limited to fairly low frequencies. It is expected that the alternative approach, using a 
spherical surface with a varying monopole density should work better.  
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