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I. INTRODUCTION, BASIC EQUATIONS AND THE TIME-STATIONARY ASSUMPTION

This paper is both similar to and complementary to a paper (entitled "The physics of aeroacoustics")
to be presented at Noise ‘93, St Pelersburg, Russia, 31 May - 3]une1993l1]. In that paper a case is
made out for regarding the fluctuating total enthalpy field Him!) as an important and potentially
useful dependent "acoustic" field. Due to space restrictions, derivations of the two principal
equations are not given in that papeflhe first of these is for the divergence of the "total enthalpy
mean radiating acoustic intensity", H'm'.‘ . where the overbar indicates a suitable time average, the
primes denote purely fluctuating quantities, and m.- a poi is the linear momentum density. The
second is an inhomogeneous "wave equation" for H'. Outline derivations of these two equations are
given here in the Appendix, and the text provides some additional discussion of what can be learned
from the equations about the physical mechanisms that can produce radiated acoustic waves in
fluids. (Unavoidably, there is considerable duplication in the two papers.)

Standard fomts of the transport equations of mass, linear momentum and energy, respectively, of a
Stokesian fluid are

39/3! + dorm/ax.- = 0, awn/a: + ap/ax, + 3 (porn; — Sip/31F P/i: (1,2)

mu + ipofi/ar + 8(pr + ; p151],- + pv,‘ — 5,71..- — tar/31pm; = pvf,‘ + M2. (3)
The notation is standard, except that Q is the rate of external heat addition per unit volume and

5.7 = Maui/911i + Qty/19x; — 2 (dot/artifijh (git + nlfauk/dkatj (4)
is the Stokesian viscous stress tensor, in which n is the coefficient of bulk viscosity; also the "extremal"
force per unit mass/,- is understood to include forcing due to chemical reactions (e.g., combustion or
absorption/radiation of electromagnetic energy) and gravitation, Together with these transport
equations and their implied Stokesian and Fourier constitutive equations for the stress tensor,
pi,- = pSgi— 55,-, and the heat flux, = -lt7T/¢?x.', respectively, one has the following thermodynamic
relationships for each fluid mass element:

p = RpT, 6U: cpr= T65 —p6f1/p). t9: = 5,81‘ = T65 +(1/plfip. (5a,b,c)
Here p is the thermodynamic pressure (as it is in the stress tensor), R is the fluid‘s ideal gas constant,
co and c, are the specific heats at constant specific volume (V = Up) and constant pressure (p),
respectively, T is the temperature, 5 is the entropy and h is the enthalpy. One also has the definitions

2
7: 57/517, (:2 = yp/p. H = h 627,-. (6a,b,c)

H is often called the "stagnation enthalpy" but here the term “total enthalpy" is preferred. Apart from
the gas constant R none of the quantities in the differential system of equations (1), (2). (3) and (5) and
in the definitions (4) and (6) are assumed to be constants in the analysis which follows; any or all of
the others may be functions of position :1, and time t. The only assumption is time-stationarity of the
flow. This means, first, that any quantity, pm,” for example, is the sum of a unique time-averaged
part and a unique purely fluctuating part of zero time average. Thus, in the case of pfxbt), one has
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l2 1:
p(xk,l)=t;(xk)+p'(xk,l). fork) = l plxk,f)dl/(lz-l1), j p‘(xk,f)dt/(I2-t1)=0, (7)

l] l]

and similarly for all other quantities. This part of the assumption is not an assumption at all, but
simply a definition of mean and fluctuating parts for any given time interval (mu). Physically,
whatever measurements one makes of however many field quantities at however many spatial
positions during the same time interval (:1, i2), the records of each of these can be separated into such
unique parts by performing the time averaging process shown in the second of equations (7) for each
record; this gives 1—: and p' follows as p —1_1 . The second part of the assumption is restrictive,
however. This is that the time derivative of the fluctuating part of any quantity has zero time
average. In the case of p '(zbl), for example. the time average of iii/Bi is (new) — p'(xk,11}l/(l2 — t1),
and this is zero only if (i) the fluctuations are periodic and (I2 - ii) is an integer multiple of the period,
or (ii) p'(xk,lz) and p'(xk,t]) are both zero, which would be the case if the fluctuating motion were of
finite duration (Let, a transient), non-zero only for t} < l < t2, or (iii) the motion is of a random
character and i2 — [1 is long enough. Each of these three possibilities can be a reasonable
approximation to reality in situations of practical interest.

The idealized physical problem of interest here is essentially the same as Lighthill‘s well known
acoustic analogy problem, except that the real fluid is not replaced by a hypothetical acoustic
medium. One has a disturbed flow “source region", of effectively finite extent, Vs, surrounded by an
infinite extent of the fluid which is effectively in a state of uniform static equilibrium apart from small
amplitude fluctuations, acoustic waves of p‘, say, with corresponding p', T and irrotational velocity
fluctuations. These two regions are "effectively" distinct, as described, but the realin is that the
strength of the sources tends to weaken sufficiently with distance, so that whatever acoustic
disturbances there may be become dominant, The only essential hypothesis is that the fluid
disturbances satisfy the Sommcrfield radiation condition as the distance tends to infinity. This rather
idealized picture has basic physical validity for real, weakly viscous and thermally conducting fluids,
as it is the adiabatic acoustic waves which can travel out much further from a generally disturbed
flow region than the vertical and entropic fluctuations which can "propagate" only by means of
convection and slow diffusion (even shock waves such as "sonic booms“ tum acoustic before dying
away altogether”. Watching the vapour trails and listening to the noise of a jet airliner as it travels
past overhead is an "experiment" tending to confirm this physical validity. Finally, as to the model, it
must be mentioned that inside V5, but notpart of it, is the surface 55 of the structure of the machine
producing the disturbed flow (see Figure l).

2. THE TWO EQUATIONS INVOLVING H‘

2.l The Radiated Intensity Equation
The first equation which is applicable to this idealized physical problem, and which providts an
identification of the sources of the time-averaged radiated acoustic intensity in the far field, can be
obtained by using the same methods as in reference [2] (the earliest version ofthis expression was
presented by the author in a verbally delivered paper at the 1974 Eighth International Congress on
Acoustics in London). The expression is derived from equations (2) and (3), with use of the time
stationary assumption, as outlined in the Appendix, and is

a H‘m'i )l31i= m'iU‘i-(m'x:)i+(TBS/t9xi)' + (p‘lasij/axil'l H p'asvaz )/R. (8)
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Here to is the Beltrami vorticity, Q/p wherg Q = V x v is the vorticity. As was shown in reference

[2], the mean totaLemhalpy intensity vector H'm'.‘ (I; for brevity) reduces to the usual acoustic mean

intensity vector p‘o',‘ in the case of small amplitude adiabatic fluctuations in an otherwise static and
uniform fluid. By the same methods as used in reference (2] (see section 5.2), one can prove, for our
problem as stated in the preceding section, that the mean total radiated acoustic power, W, is given by

P- A. . 'vi = 0 thiafing acoustic waves
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Figure 1 Schematic of a representative problem (not to scale)

W: I (1,fo st(x) + j ],<x)d$£,{x), (9)

V5 55

where q, is the complete source term given by the right side of equation (8), 1; includes its solenoidal
part, and the direction of dSEitx) is into V5. This result is easily obtained by expressing the Green
formula solution of the Poisson equation for the scalar potential of Ii in the well known spherical
harmonics expansion form and noting then that only its zero order term, proportional to 1/r, where r
is the distance of the observer from the origin (which is somewhere convenient in the engine, say),

gives the part of I; proportional to 1/72, and hence the acoustic power output as 7 tends to infinity.
Rapid fluctuations in the thermodynamic properties of a fluid particle are known to be nearly
adiabatic in weakly viscous and thermally conducting fluids; since entropy can enter or leave the
particle only by slow diffusion, the particle's entropy is slowly varying. Also, the action of viscosity is
via a similarly slow diffusion process, and so the vorticity of a fluid particle is similarly slowly
varying. Accordingly, in many disturbed flows of interest, the dependence of A], on its entropy and
viscous stress terms (see equation (8)) is likely to be appreciably weaker than its dependence on the
(fliolis acceleration term, Hence, to zero order in viscous and entropic effects, :7, reduces to simply
mi (ut'xm‘h - mfl'i). The external force)“; is zero, of course, in the absence of gravitational,

electromagnetic, and chemical reaction (combustion) forces. 55 is the surface only of the engine
structure, so the q} source region Vs includes that part of the engine occupied by the fluid. The
contribution to Wof the SE integral in equation (9) depends only on the component of 1.- normal to the
surface. Real engines have moving parts, and the engine housing may be in motion. Both the volume
and surface integrals in equation (9) are expressed in the observer's fixed coordinate system, and in

this system both V5 and 55 in practice will be functions of time. Accordingly, to deal with both
engine housing motion and engine parts motion relative toit, the time averaging must account for
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this V5 and 5; time dependence. The integrals then become appreciably more complicated looking
mathematically, but retain essentially simple physical interpretations. The normal component of I.-
remains the normal component when 55 is in motion.

2.2 The Inhomogeneous Fluctuating Total Enthalpy "Wave Equation"
Howe I3], in 1975, first called attention in published work to the relevance of the total enthalpy and

the Coriolis acceleration to the theory of sound generated aerodynarnically. The author had been
independently developing rather similar ideas, beginning in about 1973, which were reported only
verbally in his [CA paper of 1974, as mentioned in section 2.1 ,' subsequent progress was as described
in the Preface of reference [2]. Although H is directly a function of only the temperature and the
square of the velocity (H/cp is called the total temperature in fluid mechanics), for adiabatic
fluctuations one can equally well regard the pressure p‘ as the flulctuating thermodynamic quantity
upon which H depends. To first order in 7' one has H' = (p713) + ifvzl‘T. Hence EH” is a fluctuating
"total pressure", whic‘h is zero if the total pressure concerned is of Bernoulli type: i.e., for the first
order example, if p‘ 4- iflvzi)‘ is constant. In acroacoustics this has the advantage that H‘ is explicitly
independent of such convected pressure fluctuations. Lord Rayleigh chose the fluctuating
temperature as the dependent variable in his discussion of the effects of viscosity and thermal
conductivity on sound waves [4). That problem has something in common with the aeroacoustits
problem: in Rayleigh's problem the equations for the pressure and entropy fluctuations are
inextricably coupled; so are they in the aeroawusfics problem, and in addition the equation for the
vorticity fluctuations is coupled to both the others, so that there are no independent acoustic, vertical
and entropic "modes of motion".

For these reasons it is desirable to have a generally valid equation for H', of a form which may
provide some physical insights. Such an equation can be derived, as outlined in the Appendix. It is

a?H/az,2— [rziazH/atz + livid/Bl +; (n x v),' + g v; — rah/31;) air/ax, + a; u, aZH/ax; axin'
= - JIKQ x v)’; - Vii/arr — a[R‘1D5/Dll'lat + [(arZ/ar) Dh/Dtl' — [tog/cziaV'i/dtl'

+ ZIrzigviui 3/31,- +§<o x v),- 4v.» air/Au] (( n x v)'.-- var. (10)
Vi = TBS/311‘ + (l/p)a$,-,'/a‘u,' +1} (ll)

is used for notational brevity in equation (10) to denote the combined entropic, viscous and external
force terms. .The form of equation (10) is admittedly one which has been contrived, but this has been
done with the aim of producing terms both as concise as possible and in groups representing physical
aspects of the motion which are reasonably distinct and different. The primes denote “the fluctuating
part of‘. They arise in the derivation whenever it is only the fluctuating part of a single quantity
which is being considered or the group of terms thus labelled has arisen from a time differentiation of
a larger group. individual terms and groups of terms without a prime have both mean and
fluctuating parts. The aim has been achieved inasmuch as the terms in the equation do have distinct
physical interpretations. First, with one exception, the enthalpy h and the squared sound speed c1,
and their derivatives. can be regarded as simply temperature dependent coefficient factors for their
respective terms; it and c2 of course are usually the same thing, since. for example, for a fluid with
constant specific heats one has c2 = (7- llll. The exceptio is the term “kl/aflDli/Dtl' on the right
side of the equation, which is regarded as a source distribution for H' due to fluctuations in the speed
of sound. The left side of equation (10) is evidently of convected wave equation form, but with the
usual via/fir; operating on arr/oz,- augmented by the terrn i“! x v),- + iv.- and a term due to spatial
and temporal variation in the speed of sound, -fii/ax,-.
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It is surprising (to the author at least) that the source terms of equation (10) {am such relatively
simple and distinct groups. The first and last groups are the effects of the combined Coriolis,
entropic, viscous stress and external fluctuating forces, given by ((9 x vl'f - V '{l (note that (O x v).- is
equal to (a) x m);, which was used in section 2.1) The second term involves only the entropy and its
convection, and the third term, similarly, only the speed of sound (temperature) and its convection,
Note that, since -m',‘(fl x v)‘; is equal to fixw' x in‘);, the first four terms of q] as shown in equation
(8) are equal to the time average of -m','l(fl x v)‘; — V'i). Perhaps equally surprising is the linearity in
H” of equation (10). Taken together, these two surprising features suggest that although the equation
has been mathematically contrived it may well be physically sensible. in this context it does have one
unusual aspect, however. The only irreversibleI process terms appearing on the left side of the
equation are those in the multiplicative coefficient 5 V,- of 3H'/3x,- and clearly these will not give rise
to the usual attenuation of small amplitude acoustic waves by viscous and themtal diffusion. This
attenuation, therefore, must be largely provided by the source terms depending on the fluctuating
viscous stresses and entropy. Although this representation of attenuation as due to "source terms" is
not usual in wave motion it is physically acceptable. Attenuating diffusion effects are those of sinls
of the otherwise conserved wave energy, and can bc legitimately regarded as such, especially in the
present problem, As Rayleigh showed in his problem, weak diffusive and adiabatic wave motions
can be treated as uncoupled to zero order in the Stokes number, and the effect of either one upon the
other can be introduced to first order as a perturbation of the zero order motion.

This linean'ty of equation (10) in H' has the important physical consequence that if all the source
terms are zero in a region of the fluid then any H in that region must have been generated elsewhere.
This is rigorously true on mathematical grounds since one then has a linear homogeneous equation
which, by itself, has no unique solution. Even when the coefficients are functions of position and
time, there can be no "parametrically driven" oscillations of H‘ without some external forcing, or
forcing at the region's boundary.

3. CONCLUSIONS AND DISCUSSION

It has been demonstrated that the fluctuating total enthalpy H' is a physically desirable and
mathematically convenient dependent variable for all aeroacoustic problems, including both subsonic
and supersonic flows and flows with combustion. This generality is claimed because both heat
addition and forcing due to combustion have been taken into account, and the equations obtained are
not subject to any restrictions on flow speeds. The time-stationarity assumption is not unduly
restrictive for fluctuating flows of interest in aeroacoustics. An inhomogeneous convected wave
equation for H' has been presented. lts two most important features, due to the fact that H' is
independent of Bemoulli-type pressures, are as follows: (i) it is linear in H', and the coefficients of
the H' terms do not implicitly contain H' as such, being comprised of factors each of which is a
function of velocity or temperature, but notin a combination forming H'; the homogeneous terms are
therefore "properly linear“ in H', and cannot be confused with source terms; this linearity is
preserved whatever dependence the coefficients may have on position and time; (ii) its source terms
are similarly independent of H', and are physically distinct; the terms respectively represent, mostly
separately, the effects of fluctuations in Coriolis acceleration, entropy, viscous stresses, temperature
and external forces; for a lossless fluid, for example, under no external forces and subject to no
external heat addition, the only non-zero source terms are those dependent on the fluctuations in the
Coriolis acceleration, in the temperature times the entropy gradient, and in the speed of sound
(temperature).
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An expression has been presented for the divergence, q}, of the mean total enthalpy intensity

Ii = H'm 'i , where m; is the linear momentum density. By using this, a simple expression for the

radiated acoustic power from a disturbed flow region can be found, and this has been presented. The
solenoidal component of lihas not been discussed here, because it does not contribute to power
output of volume sources. it is needed to determine the total mean radiated acoustic intensity, and
the contribution of the surface integral in equation (9) to the radiated power. A vector Poisson
equation can be obtained for it, however, and it thus can be determined by using well-known
magnetostatic methods, similar to the electrostatic methods used to determine the scalar potential.
The radiated mean acoustic intensity thus can be determined, without havingto determine H‘ except
on the surface 55. The source terms {or these Poisson equations are not necessarily complicated. For
many flows of interest, for example, the dominant term of q] is the Coriolis acceleration one,

m.- (w‘ x m‘g) where w is the Beltrami vorticity (the vorticity divided by the mass density)» In the

developing part of the turbulent mixing—region of a jet, where the vorticity direction is predominantly

circumferential, this becomes simply - m1 w'yn'z where 1 denotes the mean momentum direction,

3 the circumferential direction normal to it. and 2 accordingly the direction outwards towards the jet
boundary, normal to both the others. By experimental and theoretical means, it should not be too
difficult to quantify such an expression. The useofH‘ asa dependent variable in aeroacoustics
problems thus could bringboth theoretical and practical benefits, even though it is not the sound,
which is what one hears, the fluctuating pressure p'. pH‘ can-be1p'_outside a disturbed flow region,
but inside, such a component could be augmented bythe (3 pvzil' component, or a diffusive
temperature component. or both. ’ ' '

  

The correspondence noted in the third from last paragraph of section 2.2 between the-first four terms
of the radiated power source density q; (the right side of equation (8)) and the time average of
- m'i ((0 x v)‘; — V‘il is evidence of a good consistency between the mean intensity divergence
equation (8) and the inhomogeneous wave equation (10), particularly-in respect to the interpretation
of the inhomogeneous terms of these equations as physical volume source distributions at radiated
mean power and total enthalpy fluctuations, respectively. The lack of correspondence between some
of the terms in the respective source distributions indicates the possible existence of a non-radiating
component of the H‘ field ("near field", or "pseud0<sound"). Also as previously noted, the quantity
[(Q X v)‘.' - V’d can be expected to have a predominant role in the total source strength density ofH'
(see again equation (10)) for many disturbed flows of interest. It therefore merits some examination.
From equation (11) for V‘; and equation (A7) of the Appendix it is evident that one has, exactly,

(va)‘i- V'i=-(aH‘/ar.' + @‘ilail ('12)
If this substitution were to be made in the right side of equation (10), its contrived form as a
convected wave equation for H' would be demolished! The fact that this could be done, however,
does not demolish the formal mathematical validity of equation (lo), as it stands, as a linear
inhomogeneous convected wave equation for H', and the consequent physical interpretation of its
right side as a unique source distribution for the H” wavts as described by this equation.

The identity (12) can be used to provide some additional physical insight about (Q x v)‘.' - V',‘ and its
role in the source distribution. First, if the fluctuating velocity were irrotational, one would have
m x v)',~- V'; = - 3(H' - maven/.91., where o is the scalar potential of the velocity vi. Second, in

general the first source term of equation (10) is equal to (dz/51,1) (H' — 36/30. independent of the
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solenoidal component of the velocity, but the last source term, 2lrzl . . -) ((0 x v)’,— V‘,-)]‘, depends on

both the solenoidal (vortical) and irrotational components of Bay/at. These observations suggest
fomtally regarding the fluctuating velocity scalar potential o‘ as consisting of two parts i.e.,

a = at, + a", , aa'H/at a H‘. (13)
Then, from equations (A7) and (8), and with U'.‘ denoting the solenoidal component of 9'; (derivable
from a veclor potential 1", say, as U.- = (V x A);, with 9',- = (V x um. one has

aim/at + (n x v)‘, - vi- 320'0/91.‘ at = o. (14)
Accordingly Bin/3t satisfies the Poisson equation

item/30m? = am x v)'.'- vii/an. (15)
and the first and last source terms of equation (10) are expressible, respectively, as

Joan/awaits , -2tr2 t. ..1 tam/at H91 fin/dxiitll'. (16)
Lighthill acoustic analogy type scaling of these expressions then predicts a (representative velocity)‘
dependence of the radiated H' if the source distribution is compact (its representative length scale is
small compared to the acoustic wavelength) and the representative Mach number is not too large.
This separation of 0' into dJ'H and oh is not as artificial as it might seem‘ am is th_e velocity potential
that would exist if the fluctuating flow were irrotational, and the flow in general were homentropic
and under noexternal forcing; o'n would then satisfy the homogeneous Laplace equation and
causality considerations would require it to be zero (for a problem such as that of Figure 1).
Inspection of equation (10) for such a flow reveals that the only non-zero source termis then the third,
[(QC'Z/Bt) Dh/Dtl‘. Note that in this flow the mean velocity need not be irrotational, and thus one
could have mean vorticity, which itself nevertheless would not give rise to any H‘, radiated or "near
field"! Thus it appears, that in general, the essen tial, sine qua non, quantifies in the (n x v)‘.- - V'.- terms
of the H‘ source distribution could be regarded as 3U','/t9l and yon/Bx; at. These quantities,
however, have computational disadvantages; it can easily be seen that o'H, d'n and U',’ cannot be
independently determined from equations (rams); also, experimental identification of the
U}, — Boy/31; and — Bob/Bx.- components of the fluctuating velocity u‘; would appear to be a
prohibitively difficult task (certainly by presently available methods). Nonetheless, it is clear
physically from equations (l 3) that 9'}; is the velocity scalar potential associated directly with 1‘], both
inside the disturbed flow region V, and in the radiated field outside V5, and that 9'“ is effectively

confined to V5. and associated only indirectly with H' via its dependence on - Bo‘H/axi, evident
implicitly in equation (15). Also it is clear, particularly from equation (8), that unless there is
unusually strong irreversible and/or external forcing the radiafl acoustic power must be

determined by the relatively simple (mathematically!) quantity mi ((u‘xm' ),-, in which the

 

fluctuating Beltrami vorticity m’ is a sine qua nan.

 

With respect to the Coriolis acceleration source terms, - m';(ui x it); = TnR (0' x m').' in equation (8)

and — 3(a) x m)';/t9x,' and 2h."2 ( . . . ) ((m x m)‘.')]' in equation (10), one can observe that direct Lighthill

acoustic analogy type scaling predicts p; n, 11,2 dependence of the acouch power output (per unit far
field surface area, as it were), where p,, Q, and us are the representative source region mass density,
vorticity and velocity. This scaling also predicts (vs/c-) D, vs dependence of the radiated H‘ from the
first H‘ source term (assumed compact, and where 5,, is the far field sound speed), and

(schematically) 134(st + Q; as + IV,- L + lair/Jr,- L) (I, u, from the second source term, where c; is the
representative source region sound speed. With the dissipative and external forcing and the source
region temperature gradients ignored and 9; taken as 0(v5), for simplicity, these predicted
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dependences are p, 1153 for the power, and (as/c.) 9‘2 for the first H' source term and (tug/Es)2 1751 for

the second. But, for jet turbulence noise, experiment has shown that such scalings are at best rather

"broad brush", because the source region is largely only the turbulent mixing region, which has an

axial extent of some six (or a few more) diameters from the jet exit (see Figure l), and in this region

the source strength density's representative frequency decreases with distance from the jet exit plane.
The relevant scalings from an appropriate "broad brush" interpretation of experimental results are

ps(o5/c..)5 W1 for the radiated power dependence and (vs/c...)2 0,1 for the H' dependence. These

experimental dependences correspond to the prediction here for the second H“ source (if c, - c.) but

not to those of either the first H‘ source or the power source. if the first of expressions (16) is used,

however, for the first H' source one obtains the predicted dependence (vs/it.)2 052, which agrees with

the experimental results for both the far field H‘ and its corresponding power output. It is therefore
clear that for the turbulent mixing region of a subsonic jet one must somehow have the power source

term m.- (w'xm' ).' scaling as p5(v5/c..)5 of, not p; 053. if the source terms in equation (l0) not

involving ((2 x v)',‘— V'.' are not important, as the success of the Lighthill acoustic analogy approach

and other theoretical and experimental evidence suggests. Some further insight on these scaling
questions and the nature of the fluctuating Coriolis acceleration‘s divergence as a source term can be

obtained by writing, exactly, are x vii/91; = [01132 1.7/31; 3:; — 81 war?) — flrzl'. or. after some
manipulation, as (again exactly)

_3 ._i12'3.i”i'1i”.i§azi£ii°zza_vz'[2(thtoo] «a. -
Note that the sum of the squares of the rate of strain tensor and the angular velocity tensor in this

expression is equal to the notationally simpler (any 8x112. The acoustic analogy type scaling of the
right side of equation (17). under the compact source assumption, (schematically)

(us/c”)2 v,2 + (vs/c...) (vs/cs)2 052 + (vs/Ls)2 - (vs/cs) v52. (18)
in obtaining expression (18) it has been assumed that auj/axn: — (t/p) Dp/Dl) is equal to

- (l lpcz) Dp/Dt (Let, isentropy) and p - OG pull,- L5 is a velocity gradient length scale and the minus

sign appears with the last term as a reminder that the last two terms scale the fluctuations in the
difference ((fili/intz — (Qty/3x102] between two positive definitequantities. Only the first term of

expression (18), the scaling of — 820;: off/313, appears to have the experimentally correct form. The
second and fourth terms are of 1755 and t1," orders, respectively. The third term as it stands is very
much “out of order", but would be of roughly correct form if L; were taken to be proportional to the

acoustic wavelength, as it would then become proportional to (us/c5)2 1152. it is known from
experiment, however, that the mean flow and moving eddy length scales in the respective frequency
regions of the turbulent mixing layer of a subsonic jet are significantly smaller than the wavelengths.

On these grounds one might think that [Gui/airpzl' is more important than 32(%U’2)'/31i2. But in the
mixing layer the eddies are not "frozen", but moving towards the quite random state they acquire in
the diffusiver decaying region (see Figure 1), so their transition to such a state might require a
number of eddy diameters! In any case more accurate modelling is needed to answer this kind of
question for specific flows.

  

There remains the question of why this acoustic analogy type scaling of ( 0' x m' )i produces p;
1153 instead of the correct p5(vs/c..)5 1753. A first answer to this question is that p; 1153 can be correct
for some flows, even if not for the compact turbulent mixing layers of subsonic jets; the assured exact
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correctness of ( o)‘ x m‘)l- itself does not depend on crude scaling. A second answer, of much

more interest in connection with the physical nature of turbulent mixing layer flows and their
acoustic radiations. is one which could be obtained by investigatiiapprom'ately detailed local

models 01 such flows. his kind of investigation of the nature of m,- ( (n'xm‘ )i, and the source

terms for H' presented here, is a task {or the future.
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APPENDIX

Equation (8) is derived as follows'.‘ From the time averages of equations (3) and (1)

a( H‘m'i mat.- = "7..- air/ax.- o a ( 5,715+ tar/a.- warm]: + m, . (A1)
From the time average of equation (2) . - -

-;.-ar'i/ax,-=;,~ mm,- 47:.- (s.-,-/p Mn.- (ras/ar. M».- E. (A2)
so, from equations (A1) and (A2),

3(Hm'i)/axi=;l§ (flxv); +3( Silvj +149T/r9x,‘ )laxl' + p—Q

    

5»: (Talon—7n.- th mix.- .‘ (A3)
An equation for the entropy, derivable from equations (2), (3) and (5), is

pTaS/at + p T u: aS/axi — 301.917aim/ax.-= Sij ant/ax, + pa. (A4)
This can be reananged as

 

pTas/dt + m,- TJS/ix; + m.- (1/p) 195,7/ -= 3(Sfl‘n;+ M/axi)/&xi+ pQ, (A5)
Hence equation (A3) can be rewritlen, with m 9/1). as

6(H‘m'i van-=71“ (m‘xm‘);+( pTBS/Jt )+( miTBS/iki )+[m,(1/p)r9$.7/¢91ji

    

  - ,7..- (raS/ax, )— 7n (tunes/min m.f

 

= m‘i If’s— (m‘ x in). + (TaS/Bxi)‘ + [(l/p) asij/alii'] + ( p'as-xaz/R ),
which is equation (8).

Equation (10) is derived as follows. First, by using the thermodynamic relationships (5) and
definitions (6), equations (1) and (2) are rewritten as
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C’ZKDH/Dl — D( ball?!) — R“ DS/Di + am/aq = 0, (A6)

BIN/3‘ + (n x v); + aH/ax; — 795m.- - p" 95,-,- Iaxi = /.-, (A7)
where 0/0! is the material derivative, D/DI = 3/3: + v]- 3/ 31,-. The fluctuating parts of these can be

conveniently expressed as

any/31,: lR‘l DS/Dt — r2 [DH/Di — D fine/nut = (R-1 DS/Dt — :4 Dh/Dt)‘. (A6)'
aH/in + any/a: = - (n x v)‘.- + V',-, (A7)'

where V,- is as deiined in equation (1 l). The divergence oi equation (A7)' less the time derivative of

equation (A6)' is

am a . 3105' a Dh' 1211 1311‘
Elk—=—;;i l(flxv)i—V'i]-§[EE] 4:36-95] +{cza[m —fi(zv, (A8)

By using equation (A7) one can write

DH/Dt — (D/Dl) (50.2) = BH/at + v,- aH/axi + v; laH/axi + (n x v);- Vi I — viii; Elli/ti;

=3H/3i oZvflH/fii—mVi—vivj flit/311' , (A9)

since U, (n X v),- = 0. Then

(a/ar )IDH/Dt + 2 v,‘ dH/in- u,- u,- avg/ay— u,- v,» 1' = law/312 + 2 u,- aZH/ax, a: — m,- azui/axia:

+ 2 (aw/an 511/311 - wax) (u.- vp laws,- (3/30 (v.- v,-))'
= [BRIT/312 + 2 v.- our/axis: o mo,- JZH'IJX,‘ 31,‘ + WWW/Ail ((Qx vl'i- Vi)

e 2 (chi/3!) BH/axi - (Bot/3t) vi fiat/347 - vi (fiflflww/afi- (fig/3t) Vi - 1:.- 3V,‘/Bt 1'. (A10)

Then, from equation (A7)‘ and carrying out further indicated diiferentiations, expression (A10)
becomes

... = [JEN/3:2 + 2 v; till-Max,- at + via,- flH/tki Bxi— v.‘ QVi/at + any (8/31,) i( n x v)‘.-- V',-)

430,13: )(2 alt/at.- _ v.- _ 9,- mm,- — u, wi/axm', (All)
after regrouping and interchanging i, j in v; (90,180425/311'. Then one can write

(ant/3t) (2 M/flxi- V.’- U]maxi-u; thy/191i) = (am/3i) i2 BI/fixi- V.‘-( Ox vll') (A12)

by using H = h + % v.1 and v,- hglaxi = (n x v),- + edge/ax, and in turn expression (All) can be

rewritten, by using equation (A7)', as
--~=- [BIT/511+ (flxv)'i-V'iHZJI/3Xi- i(flxv).'+ Vii]

= (EH/31;) [m x v); + V,- — 2 til/ax,- I + ((9 x v).' + V.- - 2 ahmm ((9 x vl'i ‘ V.- ). (A13)
Using expression (A13) in expression (A1 1) and the result in equation (A10) then gives, with
regrouping of terms,

33H 31-: au' ' 52H 3 . x 3h 3H 02”
E[7+2u;;i—uivii'i-uivi]=[7+2{uifi+5(nxv)i+5V;-E}E+ vial-m]

a at , ' 3V“
+2[{§uivi;i+%(flxv)i+gVi-E}{(va)i—V';}]—[u;71,

and inserting this expression via equation (A9) back into equation (A8) yields equation (10).
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