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There have been very few attempts in the past to define What ll meant by a-

"source of sound", and there is at present considerable confusion and

controversy about the definitions that have been attempted. The principal

reason for this would appear to be that "sources of sound" do not seem to

exist as material entities in their own right, in the way that electric

charges do as sources of electrical fields. Any material element of mass in

suitable motion can be a "source of sound", or so it might appear.

in mat follows. some definitions are offered and on the basis of these

certain classifications of "sources of sound" are made, based essentially

on consideration of the mechanical power that they are capable of producing

in the form of acoustic waves. In making these definitions and

classifications it becomes necessary to distinguish between "real physical

sources" and those "equivalent sources" from which acoustic waves may

appear to emerge, but which physically represent simply "reflection"

processes. not "creation" processes.

For materials that are homogeneous and isotropic, and in small amplitude

motion about a uniform internal equilibrium state of rest or of uniform

motion, the acoustic (sound) motion is best defined as that associated with

the fluctuations of the isotropic stress (hereinafter the (acoustic)

"pressure") that are rapid, enough to be adiabatic to a first order. The

small amplitudes and first order adiabaticity have the consequences that

the mass, linear mmsntum, and energy transport equations of the mechanical

continuum model of the material can be linearised, and that the pressure,

p(zk,t). and mass density fluctuations, park»), are related by

Manor) = €2p(1k,t), where c is the constant equilibrium state speed of

sound. The material behaves to first order as a lossless one and can be

characterised by c and the equilibrium mas density p. (This first order

losslessness is of course that of a material with zero irreversible process

parameters such as those of viscosity and thermal conductivity.) The local

physical dynamics of this kind of motion is then simply that the pressure

satisfies an inhomogeneous scalar wave equation with a "source" term

-q(1‘k,¢), representing Whatever effects are due to other types of motion of

the material (e.g., turbulence), and/or to external "body forces" (e.g.

electromagnetic field forces). This term game), being mathematically in

this context a function of (1,0!) which is specified independently of the

pressure p(1}c,¢), E a "source of sound"; specifically it is a distribution

of monopole moment per unit volume. Such an independent mathematical

specification of q is in accord with the realities of the physics that is

being mdslled only if the shear stress and Reynolds stress fluctuations

and the body force fluctuations actually are linearly independent of the

acoustic pressure detemined by the inhomogeneous scalar wave eguatlon and

the associated boundary and initial conditions. (The first order

aaiabaticity condition, equivalent here to setting irreversible mechanism

parameters to zero, has already taken care of such influences as those of
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viscous stresses.) The source term q(z-,,.t) is both a mathematical and a
physical “source of sound" only when this is true. It seldom is strictly
true, physically, but often can be assumed true to a first order: that is,
the acoustic motion and the other fluctuating motions are (nearly) linearly
independent).

The second, and indeed the only other, "source of sound" can be identified
in the following complete linear differential system, which is the general
mathematical model for the forced physical linear acoustics of a material
of the kind already specified in any specified open space-time region (V
(boundary SAY). T($1,ti)) (t means "not in", 5 means "ln")l

[az/m2 — (maul/a» 1pm..» = -q(zx.t)v(1k.t)a(V.T). (1)
«(meowmu r B(=k-¢-~)3p(:k,e)/an - yams) for “(an on s, (z)
Wok,” - ap(z'k.t)/at - a for 2-2“ and all :rkefl'). (3)
Here "11((eV) on 5" means that pk is not "at" s itself but lies "on" 5 just
inside V, and similarly t“. is a time infinitesimally larger than 61. The
material outside v mayor may not be the same (p.c) material as in v. and v
may beany part of a larger region filled with (ma) material. Similarly
(thtz) may be any part of a larger time interval of interest. In the
general free plus forced motion problem p and ap/u would have non—zero
specified values atthe initial time t“. In the spatial boundary condition
(2) on S the coefficients «(z-km“) and B(:rk.t..) are specified linear
algebraic-d1ffsrentialrintegral operators: i.e. , fl(.1‘k: t. .) means
C(Iks.¢,8/3rk3,8/B¢,N1ks,Mt), mere 3“ i a position co-ordinate on s
and the integrals are indefinite, and similarly for [us-mt” .).
It is the inhomogeneous term films») in the boundary condition (2)which is
the second, and only other. "source of sound". This conclusion. that only q
and y are "sources of sound", is the first consequence of the analysis
being preented; the specific evidence justifying the conclusion is to
follow.
For the linear acoustic motion being considered, which is irrotational, the

normal acoustic particle velocity on s, shaky»), is related to the

pressure gradient by pavn/ae =- -sp/Bn. (Note that it is only this
irrotatlonal acoustic particle velocity that is involved here, which

physically is not necessarily the total particle velocity in the material.)
Thus. specification of Wm,“ rapresents specification on 5 of a certain
linear combination of isotropic stress and rate of change of normal
acoustic linear momentum density, or normal acceleration (since p is
constant). Appropriate choices of u and B can give r's representing
pressure specification, normal acoustic velocity or momentum or
acceleration specification. etc.. condition (2) can be called a generalised
Robin condition, and evidently includes as special cases the well known

"passive" boundary conditions (when y=0) such as the Neumann (hard wall),

Dirichlet (pressure release), and general time and position dependent

specific normal acoustic impedance specification of z =
p/(-(l/p).l‘dt(6p/6n). The 7‘0 conditions are "active", and it is only for

these that power may need to be supplied to maintain the specified"

conditions on 5. Both :3 and y are externally maintainedforcing functions,

the first being applied to the material in v generally. and the second to
the material surface on the boundary 5. As a physical example )4 may
represent a specified, or experimentally determined, linear combination of
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the pressure and the normal acoustic particle velocity on a loudspeaker
diaphragm in forced notion.

Because the system (l)-(3) is linear it is convenient. both mathematically
and physically, to regard its response to point-impulse forcing as a
fundamental one, with its response to any forcing then being simply an

integral superposition of appropriate weighted responses of this kind to
impulses delivered at different space—time points. The point—impulse volume

source 45 is the generalised function 6(t-t')a(:k~zx') (Where
say—2,5) =- 5(:1-=1')s(:2-:2')a(:3-:3')). It is evidently highly
non—physical as it stands, since there can be no physically measurable

quantity Which is equal to zero at every space-time point but one. and has

the value (infinityY’ at that point! Also, a pork.” proportional to

H(rk-.rk:). say. is non-physical as it stands because it would have a

5“!qu ) gradient. etc.. Nonetheless, it is very convenient mathematically

to use such generalised functions. with due regardof course to the rules
for manipulation of such functions. in obtaining what are ultimately

physically interpretable solutions of the system (l)—(3). No such functions

can be regarded as actually physically existing as such at their points of

non-analyticity, but in keeping with the basic concept of generalised

functions they can be interpreted as limits of equivalent functions that
are actually smooth and bounded in a small but-finite neighbourhood of such

a point of non—analyticity, the equivalence being that of the average

behaviours of the respective non-analytic and smooth functions over such a

neighbourhood. The neighbourhood is well-defined physically as the smallest

space—time "volume" that can be "geometrically" identified with the three

metre sticks and clock available to the observer — the finite resolving

power limit of measurement.
In this context then, non-analytic functions, including both bounded ones

such as the Heaviside step function 3(1)and its indefinite integrals. and

unbounded generalised ones such as the Dirac delta function 5(:) (the

derivative of 3(2)) and its derivatives, are mathematically admissible in

the analysis of system (l)—(3) and physically interpretable as their

appropriately smoothed analytic equivalents.

The solution of system (1)—(3) can now be considered.
When, in the general Green formula for the problem (l)—(3), the adjoint

Green function is taken to be the particular integral

p5¢,(rk.tl:k',t') - 8(£-:'-l:rk-:rk'I/cg/enlxk-zk”, it is found that
for (1700):",7‘), 13(1):.” J dark ,t-la-k-rk l/c)

= —_...

    

-___ an

for (autumn, o v "mg" '
(exam. .c'J/au'uxx'm-Irx-zk'I/c) a P(1‘k':t'l¢‘k‘tg'|/¢) .

+ - ‘ 1—"—’— a? #—."—" “Wk )
AMI-rpm); I t Wick-ck l

s m
The par-Mt) given by this expression for (2k.:)e(v,1') obviously exists if'

the integrals do. and is they do then it is the unique solution there,

because of the invariance of the Green formula to choice of the

complementary function part of the Green function. Also. the fonnula

similarly gives a unique pfzk,t) of zero for all space—time points outside
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(V,T). Note that the solution exists and is unique for points at which qso

as well as for those at which «2:0: i.e.. there 2 "sound" inside the volume

source distribution q.

For realistic modelling of many physical problems the volume source

distribution a is zero. A non-zero q is physically realist“ (Le-1
directly physically interpretable) only in problems such as those of the

Lighthill acoustic analogy theory of sound generated aerodynamic-ally, in

which case it would be(l/cz)apz/atz-sz/8t2+(82/B:rtd:1)(pvgvfpgl-p5;J).
where pt! is the stress tensor, it being assumed that this q can be

prescribed independently of knowledge of Newt), at least to the extent

necessary to give reasonable estimates of p in the otherwise quiescent

(p.c) region outside the disturbed turbulent flow. obviously, if by an

exceptionally good guess, a were the physically correct one then the

solution (4) would give the physically correct total pressure p everywhere,

both inside and outside the source distribution, (v.1) here being assumed

to be all space-time.

The surface integral of equation (a) can be interpreted as a superposition

of fields of surface source distributions of monopole moment per unit area

ap/an and dipole moment per unit area —1'I;p. respectively. (Here n; is the

surface outward normal unit vector). Mathematical equivalents to these are

volume sourcedistributions of moments (6p/6n)s(n-n5.) and -nw5(n-n5_),

respectiVEly, Where "3 is a point on S and n is distance in the outward

normal direction there (n5. is a point in V approaching :15). Again it is

obvious that if the physically correct p and ap/an were to be specified on

s, then the physically correct, exact. value of the surface contribution to

p to all points in (v.1) would be given by the Green formula (4).

These monopole/dipole surface source distributions and their volume source

equivalents are not necessarily "sources of sound". Il‘hey certainly are not

when 7:0 on S and consequently the boundary is passive. When a

complenentary function part is added to the adjoint Green function,

determined by requiring the Green function to satisfy the homogeneous form

of condition (2). so that the adjoint Green function is then the "actual"

point—mules response p“(:k,tlrk',t') of the system (l)—(3) (this

response has the particular integral part p5“, as previously defined and its

complementary function part can be denoted as palcuhelxk'm'n. then the
general Green‘fomula produces the alternative forms

{for (we) 2 (VJ): pawn] J q(=k'.e-I=k~rk'I/c)

for (1km) ; (v.1). V

“12;:ar—fin— 41x

* I J 4(1k"9')Palc(1'k.$ltk',¢.)d¢kl at.

V T

+11 [
s T -[7(.rk'.t')/o(rk'.t')] ap“(rk,¢l.rk',t')/an

Here the passive reflections of waves from g by the surface S that were

included in the surface integral in equation (4) now appear separately in

the second volume integral of equations (4a,b). Since p51,: satisfies the

homogeneous scalar wave equation as a function of (11,6) for (11.2) c

O

(y(:k',¢')/p(=k‘,e')1 pex(zk,u:x',a') , ,
d5(:.~k ) a: . (4a.b)

696 Proc.l.O‘A. Vol 10 Pan 2 (1988)  



 

Proceedlngs 0' Tha Instltute Of Acoustlcs

SOURCES OF SOUND AND OF SILENCE, AND SOME CONSEQUENCES

(V.T). this integral .is a complementary function part of p(1'k,t) for

(1k,¢)e(v,1‘) and thus has no mathematical (or physical) sources there. its

contribution to p(rk,t) for (11,t)e(V.T) can be interpreted as due to

mathematical "image sources“ in the region outside (7.1). these being like

the "image source" seen in a mirror. physically non—existent in that

outside region. The surface source integral now. in either of its (6am)

forms. vanishes when we, demonstrating that it indeed. together with the

volume source :3. are the only "sources of sound" in the system (l)—(3).

with pa; in these expressions written as pawns,“ it is evident that in

the first form (4a) (flows, is interpretable mathematically as the

contribution of a surface distribution of monopole mment per unit area

(7/5), and similarly in the second form (an) -(y/a)5p5¢/Dn'. that of a

directed dipole moment per unit area of a surface layer of dipoles oriented

in the inward normal direction, both of these interpretations being exactly

analogous to the corresponding ones for equation (9). Now. however, one has

exactly the same contribution given by either the monopole layer or the

dipole layer. There is no real ambiguity about this. as it is y. appearing

in both forms, which is the "source of sound" and not either the monopole

layer or dipole layer as such. Again, both of these layers have volume

source layer mathematical equivalents. However, for both forms (sa,b) the

terms depending on p51,, in the surface integral are m interpretable as

monopole/dipole surface layer contributions. since pan is analytic on 5.

its functional form there not being comprised of members of the 11(2) non-

analytic family. As for the pun. volume integral, they are image source

terms.
From the considerations so far. it is clear that since the system (i)-(3)

is linear, and a unique solution exists, albeit expressible in different

forms, the causal "sources of sound" 4 and y for a given solution are

unique. This is the second consequence of the analysis. The third

consequence follows immediately. Since these causal "sources of sound" are

unique, any other source distributions capable of producing the same fields

in (v.1) must be non—causal.

The fourth consequence has already been mentioned obliquely in passing. It

is that the solution (9). with the equivalent monopole and dipole layer

volume representations Bp/Bn5(n-ns.) and -n¢p8(n-n9.). shows clearly that

the composite source distribution consisting of q plus these layers, if

placed in a (p,c) material of infinite extent, would produce no sound

outside the surface s of v. It is therefore a "source of silence". It

exists within the region V because the equivalent monopole/dipole layers

are "on" 5 just inside V. It includes the effects of the volume (a) and

surface (7) "sources of sound" for the interior problem. which in general

require a supply of power to be maintained. however. since p is zero on the

outer side of 5. this composite source radiates no power to any region

outside V, and thus requires no power from outside V for its maintenance.

The composite source distribution and the internal sound field it produces

comprise an internally equilibrated "rest state" as far as the outside

(p.c) world is concerned (like that of the ground state of an attain), this

state being maintained by power supplied to the internal sources q and y

from somewmre else. as equation (4) is causal. this internal equilibrium

state is causal, and is a causal "source of silence" for the exterior
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region. without the singular surface source layers, however, it would not
necessarily be a "source of silence“. For future reference it is convenient
to call the total composite volume source (1.9.. 4 plus the singular volume
source equivalents of the monopole and dipole surface layers) for such a
free field external problem a.
A simple example of a Q illustrates that at least one of the singular
layers is necessary. One would not expect both to be necessz as they are
linearly related. The pressure spectral density for the case of a point
source at r=o and a spherical monopole layer at 2-4 has the form, for no
and where k-u/c,

 

paw) — com?
and this is zero if qa(u)=-(ka/sinka)qo(u). For this saw), the field in
Oirw is q°(u)sink(r-a)/sinkd. In principle, a zero field in no can be

obtained causally in real time. The pressure spectral density measured by a
microphone at rM(a<rN<c) is pun,u)=q°(u)eink(rM-a)/sinka. The convolution

formula for the desired qua) is then qa(t)-I."p(rn.t')K(e-:')de', where
no) is the inverse Fourier transform of ~(m/c)/sin[s(rM-a)/c]. which of

course is predeterminable from the given geometry. If this convolution
integral can be done in a time less than (a-nfl/c. then can) is known in
time to use it to control a spherical lousdpeaker array on run so that the
wavefronts q°(t-r/c)4nr, as they arrive at run and pass through it are
joined by outward going waves from the loudspeaker array which exactly
cancel them out in rm. Note from the expression for p(r,w) in run that
infinite simple harmonic responses are predicted at the frequencies of
resonance of a sphere with a pressure release condition at r-a. with a
dipole loudspeaker array on r=d as well as the monopole one these can be

avoided. and it can be arranged that the outgoing waves from do are

completely absorbed in the monopole/dipole array, so that the field is zero
for rm and q°(¢-r/c)/4nr in rm. An interior field can he reduced to zero

in a similar way. Given a primary spherical source shell at r=b(m). a
spherical source shell on r=a can causally and in real time, in principle.
be controlled so that the field is zero throughout otna.
This is the fourth consequence: the existence of this infinite variety of

causal "sources of silence". The mathematical silence is complete.

Approximating this silence physically depends on being able to devise

snitable microphone and loudspeaker arrays, and fast enough controllers.

The fifth, and next to last, consequence has to do with the uniqueness or
otherwise of source distributions in free field: specifically on whether or
not two different source distributions can produce the same near and/or far
fields. It is already known from the proved uniqueness of the Green formula
result forp(:rk.t) that a given q produces a unique 1:. The question here is
the inverse: given p, does a q, exist such thatp=.ryqdv-Iy(q+q1) dv. Before
integration over time with «in as the source distribution. the Green
formla for p(1k.t) is ' _

you») — JVJTmm'.c’qumk'J'H g‘E-Eaififi’fiyfl dark at -
sy the hypothesis, p—[vhqaz' de', so the integral over q, in this
expression mustbe zero. operating on this integral by az/argz-(J/czfiz/aez
gives 0=J'vIT(-)q1(1‘k'.t')8(G-t')6(rk-rk')drk' dt' =-q(.rk,t)=0. This proves
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that the source distribution 4 is unique. Furthermre. the integral over :3

in the first of the two preceding expressions gives the unique )3 at all

(17‘. t) in the infinite space-time region: i.e., for all points inside q and

all points outside a. This conclusion. at least for points outside 4, is at

variance with the non-uniqueness of q claimed, and proved mathematically,

in section 7.2 of reference (1]. The difference in the conclusions is not

due to any errors in mathematical logic in either of the proofs, but to the

different premises. In reference [1] p is defined (as existing) only

outside q; hers p is defined (as existing) everywhere. It has been well

known for over a century. of course, that there is an infinite variety of

mathematical volume and surface sources inside any given volume 7 that can

produce the same field p outside V, and this explains the reference [1]

result. The present result shows that of these it is only the causal unique

:3 imich can also produce the corresponding )2 inside v.

A further aspect of this uniqueness question concerns the possibility of

determining 4 from far—field intonation. In respect to this question, the

"physical interpretation" given in section 7.2 of reference [1], namely

that a source distribution cannot be identified uniquely from such

information. is unhelpfully misleading. especially to those with source

identification interests, if not wholly wrong unless properly qualified.

The facts of the matter are as follows. with brief. outline explanations:

full proofs are too lengthy for inclusion here.

First, only sources of finite spatial extent have far fields, by

definition, as will be explained later. Second, sources of finite spatial

extent' comprise two mutually exclusive classes: (1) the “sources of

silence“ Q which have zero fields everywhere outside the source region. and

can be called more briefly "reactive', these self-evidently having zero far

fields: (ii) sources which have non—zero far fields, which can be called

"active". Third, given this classification of sources of finite extent,

sources of infinite extent evidently can be regarded as belonging, as

limiting cases, to the Q class of "sources of silence”; their "far fields",

detectable only by observers "at" infinity. are also zero. Fourth. for an

active distribution “(21,”. the four-fold frequency-wavenmber Fourier

transform “(K-1m) does not vanish for KJE-uJ/Itjl and the far field

frequency spectral density of the pressure pflpfzj,” is given by [1, see

equation (lo.7)][2, see section 1.5 especially pp. 37-41]

PAFF(IJIHJ“[5XP(‘XKIl’Jl/‘lejl14(KJ“'uj/|=JIMu)-
Hence, from the existence/uniqueness theorem for Fourier transform pairs,

it follows that, with the far field directivity function spectral density

defined as D(uJ/ltjl.u) - owls-Jlexp(ikl:JI)PAp;-(zj,u),

q(=J,¢) a [£1D(-KJ,lu)eXp(1KJIJ-fiwi)ditj do)

exists andis unique.

A general source distribution. in view of the linearity of the problem. can

be expressed as a sum of a member each of the two mutually exclusive

classes. active (subscript h) and reactive (subscript R): (Parole. If both

q, and qR are of finite extent than 45 can be determined uniquely from the

far field directivity information. SinCo qR requires no power from the

acoustic region outside itself, it cannot be identified by any acoustic

probing from outside: it will produce a zero scattered field in response to
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any such probing. The only acoustic observations by means of wnich it can
be determined therefore must be made in its interior; it is, of course. in
a unique. one—to—one, relationship with the interior field wnich it
produces. Since all Q, by definition, are of finite extent. this covers
all cases except those in Which m; is of infinite extent. In such cases the
field of 4,; remains present as kal-w, as well as the far field of an.
Hence the total field as kal-m is Wpflflpm. more the subscript an
denotes the approximation to first order in l/lrkl as ltqun. (Note that
one cannot logically write pk”- because the definition of "far field",
i.e., the result when the integrand in the integral for p is approximated
to first order in :f/lrfl. is not applicable: pm must be obtained as the
limiting form for large IJJI of the original integral. without this
approximation of the integrand.) In these circumstances it is possible in
principle to distinguish between PA”- and plan from knowledge of the total
pressure pa, on two distinct large concentric spherical surfaces, not just
the one required When any on that may exist is of finite extent. The pa".-
contributions to p“, are radially outward travelling waves ofthe form
D(9.0)f(t>r/c)/4rrr. carrying power towards infinity, and the pm,
contributions are of a standing wave type, carrying no power towards
infinity (on time average. of course). Given this, it is sufficiently
evident that pressure measurements on these two spheres give enough
information, when suitably analysed. to determine each of the two
contribution. PAPF and pm. on. say, the inner sphere. The active source
distributions on can then be determined from this information. furthermore,
as a representation of the frequency spectral density of the reactive field
13,; everywhere in space is available in the form of absolutely convergent
series of linearly independent spherical wave functions of Which the angle
dependence factors are a complete orthonormal set of basis functions on the
surfaces of concentric spheres of any radius. it is possible in principle,
on the basis of this two sphere information. to determine p1; and an
everywhere inside the smaller of the two spheres.

It is such an expansion in spherical wave functions that can be used to

prove that any reactive source on contained in a region of finite extent
produces zero field everywhere outside this region. and hence is a Q. a
"source of silence". The proof consists of first determining that the field
of any source distribution with zero far field has zero field on the

surface of any sphere containing QR in its interior (this follows almost
trivially from the orthogonality of the angle dependence factors of the
spherical wave functions). second, by considering various such spheres and
using an analytical continuation process it is shown that the field
vanishes everywhere outside the source region.

The sixth consequence is, in brief, that information on at most two large

concentric spheres is sufficient to determine the unique source

distribution everywhere within the smaller sphere” when Q); is of infinite

extent.
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