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There have been very few attempts in the past to define what is meant by a-
mgource of sgound”, and there is at present considerable confusion and
controversy about the definitions that have been attempted. The principal
reason for this would appear to ba that "scurces of sound" do not seem to
exist a8 material entities in their own right, in the way that electric
charges do as scurces of electrical fields. Any material element of mass in
guitable motion can be a "source of sound”, or so it might appear.

In what follows, some definitions are offered and on the basis of these
certain claseifications of "sources of sound” are made, pasad essentially
on congideration of the mechanical power that they are capable of producing
in the ferm of acoustic waves. In making these definitions and
classifications it becomes necessary to distinguish between "real physical
gources” and those "equivalent sources™ from which acoustic waves may
appear to emerge, but which physically represent simply “reflection®
processes, not "creation" processes.

For materials that are homogeneous and 1lsotropic, and in emall amplitude
moticn about a uniform internal equilibrium state of rest or of uniform
motion, the acoustic {sound) motion is best defined as that associated with
the fluctuations of the isotroplc streea (hezeilnafter the (acoustic)
»pregsure”) that are rapid erough to be adiabatic to a first order. The
small amplitudes and first order adisbaticity have the consequences that
the mass, linear mementum, and energy transport equations of the mechanical
continuum model of the material car be linearised, and that the pressure,
p(ry,t), and mass density fluctuations, p(rk.t), are related by
P(Tx,-t) = c2o(zk.t), where ¢ 18 the constant equilibrium state speed of
sound. The material behaves to first order as a lospless one and can be
characterised by ¢ and the equilibrium mass density p. (This first oxrder
1osslessness is of course that of a material with zero irreversible process
parameters such as those of viscosity and thermal conductivity.) The local
physical aynamics of this kind of motion is then simply that the pressure
satisfies an inhomogeneous scalar wave equation with a rgource” term
-q(zx.t), representing whatever effecta ara due to other types of motion of
the material {e.g., turbulence), and/or to external “body forces" (e.g.
electromagnetic field foreces). This term g{xy,t), belng mathematically in
this context a function of (¥y,t) which is specified independently of the
pressure p(xy.t), is a “source of pound"; specifically it is a distribution
of monopole moment per unit volume. Such an independent mathematical
specification of ¢ 18 in accord with the realities of the phyeics that is
being modelled only if the shear stress and Reynolda stress fluctuations
and the body force fluctuations actually are linearly independent of the
acoustic pressure determined by the inhomogeneous gcalar wave ecjuat.ton and
the associated boundary and initial conditions, (The first oxder
adisbaticity condition, equivalent here to setting irreversible mechanism
parameters to zero, has already taken care of such influences as those of
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viscous stresses,) The source term q(Iy.t) is both a mathematical and a
physical “source of sound™ only when this is true, It seldom is strictly
true, physically, but often can be assumed true to a first order: that is,
the acoustic motion and the other fluctuating motions are (nearly) linearly
independent ). ’

The second, and indeed the only other, "source of sound” can be identified
in the following complete linear differential system, which is the general
mathematical model for the forced physical linear acoustics of a material
of the kind already specified in any specified open space-time region (V
{boundary SgV¥), T(‘zrtg)) (£ means "not in", « meana *in"):

(9270242 - (1/c2)02/0t2)p(ax,t) = -q(Tx,t), (2K, t)E(V,T), (1)
ATyt JP(Tx.t) + Blxg,t..}ap(x),t)/8n = y(xx,t) for Tx(eV) on S, (2)
P(Tx,t) = 8p(ax,t)/at = O for t=ty, and all xxe(V). (3)

Hera "xp(«V¥) on §" means that xy is not "at” 5 itself but lies "on" 5 just
inside V¥, and similarly ¢;4+ is a time infinitesimally larger than ty. The
material outside ¥ may or may not be the same (p.c) material as in ¥, and v
may be any part of a larger region filled with (p.c) material. Similarly
(t;j.t2) may be any part of a largexr time interval of interest. In the
general free plus forced motion problem p and 8p/8t would have non-Zero
specified valuea at the initial time ¢;,. In the spatial boundary condition
(2) on § the coefficients a(xy.t..) and p(xx.t..} are specified linear
algebraic-differential-integral cperators) 1.e., afTy.t..) means.
G{Txg.t,0/0Tyy,8/8¢L, JAxyg, JAL), where ryxg is a position co-ordinate on 5
and the integrals are indefinite, and similarly for A(xy.t...)}.

It iz the inhomegeneous term y(&xg,t)in the boundary condition (2)which is
the second, and only other, "source of sound”, This conclusicn, that only q
and y are "scurces of sound”, is the first consequence of the analysis
being presented; the specific evidence justifying the conclusicon is to
follow,

For the linear acoustic motion being considered, which is irrotational, the
normal acoustic particle velocity on 5, vp{Ixg.t)., is related to the
presaure gradient by pévp/dt = -8p/én, (Note that it is only this
irrotational acoustic particle wvelocity that is involved here, which
physically is not necessarily the total particle velocity in the material.)
Thue, specification of y(xyg,t) representa specification on § of a certain
linear combination of isotropic stress and rate o©of change of normal
acoustic linear momentum density, or normal acceleration (since p is
constant). Appropriate cheices of a and P9 can give y's representing
pressure specification, normal acoustic velocity or momentum or
acceleration specification, eto.. Condition (2) can be called a generalised
Robin conaition, and evidently includes as special cases the well known
rpassive” boundary conditions {when %=0) such as the Neumann {hard wall),
Dirichlet (pressure release), and general time and position dependent
specific normal acoustic impedance apecification of z =
p/l=~{1/p)rat{ép/an), The »y*0 conditions are "actlve", and it is only for
these that power may need to be supplied to maintain the specified’
conditions on 5. Both g and y are externally maintained foreing functions,
the first being applied to the material in V geperally, and the second to
the material surface on the boundary 5. As a physical example y may
repregsent a specified, or experimentally determined, linear combination of
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the pressure and the normal acoustic particle velocity on a loudspeaker
diaphragm in forced motion.

Because the syatem (1)-(3) is linear it is convenilent, both ‘mathematically
and physically, to regard ite response to point-impulse forcing as a
fundamental cone, with ite response to any foreing then being simply an
integral superpogiticn of appropriate weighted responoses of this kind to
impulees delivered at different space—time pointe. The point-i.mpulse volume
source qs le the genera.lj.sed function E{t-t )8(.1:., Ty ) {where
B(Tx-Tx ) = B(x1-T1 )8(Tz-x3 )B(x3-3")). It is evidently  highly
non-phyaical as it stands, since there can be no physically measurable
quantity which is equal to zero at every space-time point but one, and has
the value (i.mf:l.n:l.ty)4 at that point) Also, a p{xx.t) proportional to
Hizy-zx "}, say, is non-physical as it stands because it would have a
S(xx-ax ') gradient, etc.. Nonetheleas, it 1s very convenient mathematically
to use such generalised functicns, with due regard of course to the rules
for manipulation of such functions, in cbtaining what are ultimately
physically interpretable solutions of the system (1)-(3). No such functions
can be regarded as actually physically existing as such at their points of
non-analyticity, but in Xkeeping with the basic concept of generalised
functions they can be interpreted as limits of equivalent functions that
are actually smooth and bounded in a small but-finite neighbourhood of such
a point of non-analyticity, the equivalence being that of the average
behavicurs of the respective non-analytic and smooth functions over such a
neighpourhood. The neighbourhood is well-defined physically as the smallest
gpace-time "voluma” that can be "geometrically® identified with the three
metrs sticks and clock available to the observer ~ the finite resolving
power limit of measurement.

In this context then, non-analytic functions, including both bounded ones
guch as the Heaviside step function H(x) and ita indefinite integrals, and
unbounded generalised ones Buch as the Dirac delta function E(x) (the
derivative of H(=x)) and 1its derivatives, are mathematically admisaible in
the analysis of pgystem (1)-{3) and physically Iintérpretable as their
appropriately smoothed analytic equivalents.

The solution of system {1)~(3)} can now be considered.

when, in the general Green formula for the problem (1)-(3), the adjoint
Green function is taken to be the particular integral
PSa:fl‘k-“-“-‘k L) = Bt -l:rk ) I/c)/érrl.'ek :t‘g 1, it is found that

for (Tx,t)e(V,T), pl(zx.t) Qxy . t-1Tx-T) ' 1/C) ,
= : d;pk
for (zx.t)E(V,T), O v @ miEmeacl
(TR A VLT T s R o P V) B 1 WS R RV .
+ " + 3‘;" - as¢{zx )
snlz-zy | t 7| p-Ty " |
5 {4)

The p(rk.t) given by this expression for (Zx.t)e(V,T) obvicusly exiots i1f
the integrals do, and if they do then it is the unique soluticn there,
because o©of the invariance of the Green formula to choice of the
complementary function part of the Green function. Also, the formula
pimilarly gives a unique p(zx.t) of zero for all space-time points outside
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(V,T). Note that the solution exists and is unique for points at which qz0
as well) as for those at which ¢=0: l.e,, there is "sound” inside the volume
source distribution 4.

For realistic modelling of many physical problems the volume source
distributicn ¢ 1is zero. A non-zero g is physically realistic (i.e.,
directly physically interpretable) only in problems such as those of the
Lighthill acoustic analogy theory of sound generated aerodynamically, in
which case it would be (1/¢2)9p2/6t2-22p/082+¢02 s0x82y) (PVLY #PL1-P61 1),
where pgy is the stress tensor, it being aspumed that this g can be
prescribed independently of knowledge of p(ry.t}, at least to the extent
necessary to give reasonable estimates of p in the otherwise gquiescent
{p.c) region outside the disturbed turbulent flow, Cbviocusly, if by an
exceptionally good guess, q were the physically correct one then the
solution (4) would give the physically correct total pressure p everywhere,
poth inside and outaide the source distribution, (¥,T) here being assumed
to be all space-time.

The surface integral of equation (4) can be interpreted as a superposition
of fields of surface source digtributions of moncpole mement per unit area
ap/én and dipole moment per unit area -—ﬁ;,p. respectively, (Here ni is the
surface outward normal unit wvector). Mathematical egquivalents to these are
volume source distributions of moments {8p/dn)B(n-ng.) and -ngpb(n-ng.),
respectively, where ng is a point on § and n is distance in the outward
normal direction there (ng— ias a point in ¥ approaching ng). Again it is
obvious that if the physically correct p and 3p/an were to be specified on
5, then the physically correct, exact, value of the surface contributicon to
p to all points in (V,T) would be gilven by the Green formula (4).

These monopole/dipole surface source distributione and their volume source
equivalenta are not necessarily “sources of sound”. They certainly are not
when =0 on S and consequently the boundary is passive, When a
complementary function part is added to the adjeint Green function,
determined by requiring the Green function to satisfy the homogenéous form
of condition (2), so that the adjoint Green function is then the “actual®
point-impulse response pgr{Tx.tlTk ,t') of the system (1)}-(3) (this
reoponge has the particular integral part pgpy 88 previously defined and its
‘complementary function part can be denoted as pa;c(.rk,ﬂzk',t.')), then the
general Green formula produces the alternative forms
{for (Zk t} e (V.T}, p(.rk.t)] J qrxy’ . t- -2y 1/2)

=
v

. dz,’
for (xx.t) £ (V.T), O amlzg-Tk |
+ ] J a(zx’ ' IpgrofTx. tlzx ¢ daxy' ds’

vT

1]

s gl-lvtz’ ¢ )/atz’ 7)1 psp (k. tlax ¢ )00
Here the passive reflections of waves from q by the surface § that were
included in the surface 1integral in equation (4) now appear separately in
the second volume integral of equations {4a,b). Since pgro satisfies the
homogeneous scalar wave equation as a function of (rx.t) for (xx.t) <

fytxy 2" )/80x" 7)) pprlax.tlay’ t') ] N
as¢zy ) 4t . (4a,b)
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(V.7), this integral is a complementary functicn part of pl{xyx.t) for
(T),t)e(V.T) and thus has nc mathematical (or physical) sources there. Ita
contribution to pfzy.t) for (xx,t)s(V.T} can be interpreted as due to
mathematical “image sources” in the region outside (V,T), these being like
the T"image source"™ seen in a mirror, physically non—existent in that
outside region. The surface source integral now, 1n either of its (4a,b)
forms, vanishes when y=0, demonstrating that it indeed, together with the
volume source ¢, are the only "scurces of sound™ in the system (1)—(3).
With pgr in these expressions written as pgytPsres it is evident that in
the first form (4a) (¥/P)Psx 18 interpretable mathematically as the
contribution of a surface distribution of monopole moment per unit area
(v/B), and similarly in the second form (4b) ~(y/a)dpso/én’, that of a
directed dipole moment per unit area of a surface layer of dipolea oriented
in the inward normal direction, both of these interpretations being exactly
analogous to the corresponding ones for equation (4). Now, however, one has
exactly the same contribution given by either the monopole layer or the
dipole layer. There 18 no real ambiguity about this, as it is y, appearing
in both forms, which is the "source of sound” and not either the monopole
layer or dipole layer as such. Again, both of thesa layers have volume
source layer mathematical egquivalents. However, for both forms (4a,b) the
terms depending on pgre in the surface integral are npot interpretable as
monopole/dipole surface layer contributions, since pgre is analytic on S,
1t functional form there not being comprised of members of the H{x) non-
analytic family. As for the pgj. volume integral, they are image source
terms.

From the considerations sc far, it is clear that eince the system (1)-(3)
is linear, and a unigque solution exlsets, albelt expresaible in different
forms, the causal "sources of sound” q and y for a given solution are
unique, This is the second consequence of the analyeig, The third
consequence follows immediately. Since these causal "sources of pound" are
unique, any other source distributions capable of producing the same fields
in (V¥.T) must be non-causal.

The fourth consequence has already been mentioned obliguely in paesing. It
iz that the sclution (4), with the equivalent monopole and dipole layer
volume representations 8p/9nb(n-ng.} and -ngpB{n-ns.), shows clearly that
the composite source distribution consisting of q plus these layers, 1if
placed in a (p,c) material of infinite extent, would produce no sound .
outside the surface 5§ of V. It ls therefore a "source of silence". It
exists within the region V¥ because the equivalent moncpolesdipole layers
are “on" § just inside V. It includes the effects of the velume (q) and
purface {y) "sources of sound™ for the interior problem, which in general
require a supply of power to be maintained. However, since p is zerc on the
outer pide of S, this composite source radiates ne power to any region
outside ¥, and thus requires no power from outside ¥ for its maintenance.
The composite source distribution and the internal sound field it produces
comprise an internally equilibrated "rest astate" as far as the outside
(p,c) world is concerned (like that of the ground state of an atom?), this
state being mainptained by power supplied to the internal sources q and ¥
from somewhere else. AS eguation (4) 18 causal, this internal equilibrium’
gtate is causal, and is a causal "source of silence” for the exterior
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region., Without the singular surface source layers, however, it would not
necessarily be a "source of silence™. For future reference it is convenient
to call the total composite volume source (i.e., g plus the singular volume
source equivalents of the monopole and dipole surface layers) for such a
free field external problem .
A pimple example of a @ ifllustrates that at least one of the singular
layers is necessary. One would not expect both to be necessary as they are
linearly related. The pressure spectral density for the case of a point
source at r=0 and a spherical monopole layer at r=a has the form, for rra
and where k=uw/c, ikr ke
- ginka ™
PIT.0) = Bo(W)™g0r- * QalW)=2L3" G *
and this 1s zero if ggf{w)=—(kas/einka)qy(w). For this gglw), the fiald in
Odr<a 1s go({w)sink(r-a)/ainka. In principle, a zero field in r»a can be
obtained causally in real time. The pressure spectral density measured by a
microphone at ryfC«ryca) 18 piry.w)=qglw)sink(ry-a)/sinka. The convoelution
formula for the desired qu(t) 18 then Qqalt)=ly®p(ry.t JK(t-t')at’, where
X{t) is the inverse Fourier transform of -{wa/s/c)s/sinf{w(ry-a)/cl, which of
course ias predeterminable from the given geometry. If this convolution
integral can be done in a time leas than (a-ry)/c, then gu(t) is known in
time to use it to control a apherical lousdpeaker array on rea so that the
wavefronts q.(t-r/c)4nr, as they arrive at r~a and pasa through it are
joined by outward going waves from the loudspeaker array which exactly
cancel them out in rsa. Note from the expression for p(r.w) in r¢a that
infinite seimple harmonic responses are predicted at the fraquencias of
regonance of a sphere with a pressure release condition at r=a. With a
dipole loudspeaker array on r=a as well as the monopole one these can be
avoided, and it can be arranged that the outgoing waves from 4, are
cempletely absorbed in the monopole/dipole array, so that the field is zero
foxr rea and gglt-r/c)/49nr in r<a, An interior field can be reduced to zero
in a similar way. Given a primary spherical sourca shell at r=b{ra)}, a
spherical source ghell on re=a can causally and in real time, in principle,
be controlled so that the field is zero throughout O<&r«<a.
This is tha fourth consaguance: the existence of this infinite variety of
causal "sources of silence”. The mathematical silence 1is complete.
Approximating this silence physically depends on being able to dJdevise
guitable microphone and loudspeaker arrays, and fast enough controllers.
The £ifth, and next to laat, ccnsegquence has to 40 with the uniqueness or
othexrwise of source distributions in free field: specifically on whether or
not two different source distributions can produce the same near and/or far
fields, It 1s already known from tha proved uniqueness of the Green formula
result for p(zry,t} that a given g produces a unique p. The question here is
the inverse: given p, dces a ¢ eXist such that p=[yqaV=[p(g+q;) AV. Before
integration cver time with g+gq; a8 the source distributlion, the Green
formula for pi{xy.t) is , .
plax.e) = [ [ caczc’ oot yvagem’ ety HEL TR an ar,
By the hypothesis, p=fylrqdr’ dt’, so the integral over q; in this
expression must be zero. Operating on this integral by 82/ax2-(1/c?)a2/at2
gives O=Jylpl-)qs(zk .t )6Ct-2")6(z-15 )y At’ =-g{xx.t)=0. Thia provea
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that the source daistributicn g is unique. Furthermore, the integral over q
in the first of the two preceding expressions gives the unique p at all
{xx.t) in the infinite space-time region: i.e., for all poaints inside q and
all peints cutside g. This conclusion, at least for points outeide q, is at
variance with the non-uniqueness of q claimed, and proved mathematically,
in pection 7.2 of reference [1]}. Tha difference in ‘the conclusicons is not
due to any errors in mathematical logic in either of the proofs, but to the
Aifferent premises. In reference (1) p is definea (as existing) only
outside g here p is defined {as existing) everywhere. It has Dbeen well
xnown for over a century. of course, that there is an infinite variety of
mathematical volume and suxrface sourcea inside any given volume ¥ that can
produce the same field p outaside ¥, and this explains the reference (1]
result. The present result showa that of these it is only the causal unique
g which can aleo produce the corresponding p inside V.

A further aspect of this unigueness question concerns the possibility of
determining q from far-field information. In zrespect to this question, the
nphysical interpretation” given in section 7.2 of reference (1), pamely
that a source daistribution cannot be identified uniquely from such
information, 1is unhelpfully misleading, especially to those with source
jdentification interests, 1f not wholly wrong unless properly qualified.
The facts of the matter are as follows, with brief, outline explanations)
full procfs are too lengthy for inclusieon here.

First, only sources of finite spatial extent have far fields, by
definition, as will be explained later. Second, sources of finite spatial
extent’ comprise two mutually exclusive classes: (1) the “sources of
gilence® @ which have zero fields everywhere outside the source region, and
can be called more briefly "reactive®, these aelf-evidently having Zero far
fielde; {(i1) sources which have non-zero far fields, which can be called
vactive”. Third, given thia classification of sources of finite extent,
sources of infinite extent evidently can be regarded as belonging, as
1limiting cases, to the @ clasa of "sources of sllence"; their "far fields",
detectable only by cbservers "at" infinity, are also zero, Pourth, for an
active distribution qa(zy.t}, the four-fold frequency—wavenunber FPouriet
transform qga(Ky.w) does not vanish for xjn-uj/lcjl and the far field
frequency epectral density of the pressure Pars(zy.t) im given by [1, eee
equation (10.7)][2, see section 1.5 especially pp. 37-41]
Py;(:d.m,lutexp(-ikI:J-r/#wl:;l]q(n‘f--k:jflzjl,w).

Hence, from the existence/unigueness theorem for Fourier tranaform pairs,
it follows that, with the far field directivity function spectral density
defined as D(kzry/Ixjl,w)} = 4nlrJIexp(ikl.'cJI)PAFp(zJ,m),

a(zy.t) = :;2:1:(-nJ,m)exp(ixJ:ﬁmt)axJ Au

exists and is unique.

A general source Aistributien, in view of the linearity of the problem, can
be expressed as a sum ©of a member each of the two mutually exclusive
classes, active (subscript A) and reactive (subscript R): gq=qa+qr. If both
qn and qp are of finite extent then ga can be determined uniguely from the
Far field directivity information. 5Since qp requires no power from the
acoustic region outside itself, it cannot be identified by any acoustic
probing from outeide; it will produce a Zero scattered field in response to
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any such probing. The only acoustic observations by means of which it can
be determined therefore must be made in its interior; it is, of course, in
a unique, one-to-one, relationship with the interior f£ield which it
produces. Since all qgp, by definition, are of finite extent, this covers
all cases except those in which gp 18 of infinite extent. In such cases the
field of qp remains present as |xxl-w, as well as the far field of qa.
Hence the total field as [xxl-w 18 pPo=ParF+PRws, Where the subscript o
denotes the approximation to first order in 1/lxyl as |lryi-m. (Note that
one cannot logically write pgpr because the definition of "far fielav”,
i.e., the result when the integrand in the integral for p is approximated
‘to first order in x4 /rrjl. is not applicahble; pgpy, must be cobtained as the
limiting form for large Izyl of the original integral, without this
approximation of the integrand,} In thess circumstances it is possible in
principle to distinguish between Pprpr and pp, from knowledge of the total
pressure py, on two distinct large concentric spherical surfaces, not just
the one required when any qp that may exist is of finite extent. The papr
contributions to p, are radially outward travelling waves of the form
D{o,$)f(t-r/c)/4nr, carrying power towards infinity, and the ppy
contributions are of a atanding wave type, carrying no power towards
infinity (on time average, of course). Given this, it iz sufficiently
evident that pressure measurements on these two spheres give enough
informaticon, when suitably analysed, to determine each of the two
cantribution, pape and pgy. on, say, the inner sphere, The active source
distributions g5 can then be determined from thia informaticn, Purthermore,
as a representation of the frequency spectral density of thea reactive field
Pr everywhere in space is available in the form of absolutely convergent
series of linearly independent spherical wave functions of which the angle
dependence factors are a complete orthonormal set of basis functiona on the
surfaces of concentric spheres of any radius, it is possible in principle,
on the basis of this two sphere information, to determine pg and gqp
everywhere inside the smaller of the two spheres.
It i=s auch an expansion in spherical wave functions that can be used to
prove that any reactive source qm contained in a region of finite extent
produces zero field everywhere outside this region, and hence is a @, a
"source of silence". The proof coneists of firat determining that the field
of any sourca distributicn with =zero far field has zero field on the
surface of any sphere cohtaining ggr in its interier (this follows almost
trivially frem the orthogonality of the angle dependence factors of the
opherical wave functions). Second, by considering varicus such spheres and
uaing an analytical continuvation process it is shown that the field
vanishes everywvhere outside the source region.
The sixth consequence is, in brief, that information on at most two large
concentric sapheres Jis sufficient to determine the unigue source
distribution everywhere within the smaller sphere, when gz 1a of infinite
extent,
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