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INTRODUCTION

The sea is not homogeneous. Features of the underwater environment include

internal waves. stratification, turbulence. fronts, and eddies, all of which contribute

to a random structure which induces fluctuations in acoustic signals. In this paper,

the effect of these fluctuations on the performance of an array is considered.

This is a topic which has received little attention in the open literature. Many

authors. eg [1.2], have investigated the effects of entirely random phase and

amplitude variations, but in the present case the fluctuations are partially

correlated across the array. Statistically derived expressions for the time-averaged

beampattern [3.4] of an array in the presence of correlated phase and amplitude

fluctuations, as well as its variance [5]. have been given previously, but these

results are limited to uniformly spaced line arrays with no shading or steering.

More recently. the author has described a simulation technique [6,7] which can be

applied to any arbitrary array geometry with any form of shading or steering. Such

simulations, however. do not give any insight into the mechanisms in operation. and

it is often difficult to explain the results obtained.

The present paper presents a new method of obtaining the average directivity

pattern of an array, subject to correlated phase and amplitude fluctuations, which is

based on the angular plane wave spectrum of the fluctuating wave field. The

method is applicable to any array geometry. shading or steering. and in the special

case of a uniform line array leads to the same equations as the previous statistical

methods [3,“. Futhermore. because the angular_, spectrum approach gives greater

understanding of the problem, It becomes possible to derive simplified expressions

for the minimum beamwidth achievable in a given propagation environment.

AN ANGULAR SPECTRUM 0F PLANE WAVES.

It is convenient to think of a fluctuating wavefront as made up of a series of

uniform plane waves travelling in different directions. known as the plane wave

spectrum. Consider a single plane wave from this spectrum propagating in the,l.,r

plane with its wave normal making an angle 9 with the 1. axis, as sketched in

Figure l. L is the mean direction of propagation and r is the transverse direction.

Let the complex amplitude of the single plane wave be MB), so the field at the

point (L.r) may be written

u(L.r) = A(9)exp(lk(rsin0 0 15059)). (i)
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it being the wavenumber; it = 21rf/c where f
'WAVE is frequency and c is sound speed. This idea

NORMAL can be extended to a bundle of waves at
angles between 9 and 6 e dB and a
resultant complex amplitude Meme. The
corresponding field at (L.r) is given by

    

u(L.r) = Aieideexpiiklrsine ' Lcoseii. (2)

The resulting component of the field in. the
r direction due to all the waves for 9 in
the forward half plane can then be written

Fig. 1. Wave normal of a single vt/Z
u(L,r) = I Aieicoseexpiiklrsinecomponent of the plane wave spectrum.

1V2

+ LcosBHdB. (3)

The angle 9 may be expressed in terms of s = sine, so that the complex amplitude

is transformed to some function Fisi, which is actually the plane wave spectrum.

and Equation (3) becomes

.1 '

u(L,r) = I1 F(s)exp(ik(rs + Lcosends. (4)

This equation represents a wave field varying over two dimensions L and r in terms

the plane wave spectrum F(s). Over the plane L = 0, the wave field is given by

u(r) = I Fisiexpiikrsids. (S)

which is immediately recognisable as a Fourier transform. It is noted that the limits

of integration have been increased from :1 to 100, but Isl > i represents imaginary

values of 8 which. in turn, represent evanescent waves. These are attenuated so

rapidly that their contribution may be neglected. Thus the plane wave spectrum and

the complex amplitude of the wavefieid along a line normal to the mean

propagation direction form a Fourier transform pair.

THE AVERAGE BEAMPATTERN

The plane wave spectrum gives the distribution of the acoustic field as a function

of angle. whilst a receiving array observes this field with a finite angular resolution

determined by its directivity pattern. The array output is then the convolution of

the plane wave spectrum and the array directivity pattern [7]. given by the

convolution integral: ‘
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Y(s) = W(s)-F(s) = I a W(s'lF(s - s')ds', (6)

where W(s) is the unperturbed array directivity pattern. Fis) is the plane wave spectrum

of the wave field and Y(s) is the resultant array directivity. if the plane wave spectrum

represents a fluctuating wavefield then Yisl is the average beampattern.

At this point. the spatial frequency v is introduced. where

u = kslne. (7)

It is then pointed out that. although the field described by u(r) in Equation (5) is

not known specifically. the square of the plane wave spectrum (ie the power

spectrum) is obtained In terms of v from the Fourier transform of the mutual

coherence function of the wave field [a]. This is simply because the mutual

coherence function is just the complex spatial correlation function of the field;

correlation functions and power spectra in the relevant domains are related by the

Fourier transform [9]. Furthermore. the array directlvity pattern in terms of v is

just the Fourier transform of the distribution of sensitivity across the array ilr“

Another well known theorem relating to Fourier transforms [9] may now be noted.

that is that the convolution of two functions is the transform of the product of

their transforms. Thus. the expected mean square beampattern is given by the

transform of the product of the mutual coherence function and the autocorrelation

of the array sensitivity distribution. written as

E[<Y2>] = I rir)[ I T(n )m. o ridn]e"‘"‘dr. (a)

where PM is the coherence function and TM is the array sensitivity distribution.

It should be clear that Equation (8) may be applied to any line array or continuous

aperture. The element spacings in a line array need not be uniform. the elements

need not be point sources, and any shading or steering function may be

incorporated (T(r) may be complex). Furthermore. if a two or three dimensional

Fourier transform is used, the method can be extended to planar and conformal

arrays. Nevertheless. in order to provide illustrative examples. attention will now be

restricted to a uniform line array of N elements and spacing d. The sensitivity

distribution T(r) is then expressible as a series of unit impulses. and it may be

shown that its autocorrelation function is given by [7]

14-!

I‘ T(n mu v rldn -= Z (N - n)8(r — nd). (a)
'°° n=—(N—I)
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where S is the impulse function. Thus, Equation(8), may be written as

«a: N-i -
E[(Yz)] = L r(r)[ g; ”(N — n)8(r- nd)]e'_"“’dr. (10)

n.- _

Both the coherence function and the autocorrelatlon function are real and even. so
the Fourier transform may be replaced by the cosine transform and, using the
sifting properties ‘of the impulse function [9]. Equation no) becomes

N-l

E[<Y2>] = N o 22 (N - n)T(nd)cos(vnd). (n)
n=l

Finally. some tidying up may be carried out for consistency with the earlier
literature: the entire expression is normalised by dividing by N2 and the variable
'1' = kdsine is introduced. The end result is

I N-l

E['<Y2>] = K25 . “Elm - n)l‘(nd)cos(1n)}. (12)

PHASE AND AMPLITUDE FLUCTUATIONS

Equation (12) gives the expected mean square beampattern of an array in terms of
the mutual coherence function of the fluctuating wave field, a property often
measured in experiments. Much of the theory of propagation in random media.
however. gives results in the form of variances and spatial correlation functions for
the phase and amplitude fluctuations independently. The coherence function may be
obtained from these by using the relationship [8]

rm = exp[(52>(Cs(r) — n o <12>icxm - n]. - -' (13)

where S is phase. 1 is log-amplitude and Cs and C1 are the phase and log-
amplitude correlation functions. Equation (12), may now be written as

N-I

E[<Y2)] = :25 6 Z, (N - n)cos(1n)

x exp ($2XC (r) - i) v (12>(C (r) - 1) .‘ (14)
S 1

This is equivalent to the result obtained by Lord and Murphy [4] using statistical
techniques. However. obtaining the result by the plane wave spectrum method, gives

. information about the behaviour of the degraded beampattern which is not obvious
from the statistical approach.
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THE BEAMWIDTH UMlT

Referring either to Equatlon (6) or (B). and from a consideration of the way that

the convolution integral operates. it should be clear that when two functions of

finite width are combined in this way the result approximates to the broader of the

two, but is "smeared" over a width equivalent to the narrower of the two. Thus. if

the unperturbed array directlvity pattern ls very much broader than the plane wave

spectrum. the convolution of the two will not differ greatly from the array

directlvity pattern and there will be little apparent degradation.

if the directlvity pattern ls then made narrower until its width becomes comparable

with that of the plane wave spectrum. the resulting average beampattern will be

smeared considerablyI sidelohes will run together and the main beam will broaden.

In the limit, when the unperturbed array pattern becomes narrower than the plane

wave spectrum. the shape of the convolution will tend towards that of the plane

wave spectrum. This is a most important point. The angular resolution of an array

cannot be less than the width of the plane wave spectrum of the incident wave

field. This represents the ultimate limit to the resolution. it is independent of the

array and is determined entirely by the medium and its effect on acoustic propagation.

This point Is demonstrated in Figures 2- and 3. In Figure 2 the dashed lines show

the beamwldth of a uniform line array. with no signal fluctuations. plotted against

the length of the array, from 0.1m to 100m on logarithmic scales. The frequency is

30kHz in Figure 2A and lOOkHz in 23 and. because of the inverse relationship

between beamwldth and array length, the plot appears as a straight line with a

slope of -1.

In order to determine the beamwldth of degraded beampatterns, signal fluctuation

parameters were derived from environmental measurements (7] (see also Equations
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Fig. 2. Beamwidth of ideal pattern (dashed line] plotted against array length compared

with average pattern for 'typical' fluctuation [solid line) and width of the piano wave

spectrum (dots) for SQkHz at 1000M (A) and 100kHz at 500m (B).
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(i8) and (20) below) and have been
used In Equation (14). The results are

plotted as the solid lines and

correspond to a frequency of 30kHz
and propagation range of i000m in 2A.
and iOOkHz at 500m in 23. For
comparison, the dotted lines show the

width_ of the relevant plane wave
spectra, derived from the Fourier
transform of the coherence function as
defined In Equation (l3).
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It can be seen that the degraded

HEREIN": I DEGREES beamwidths initially follow the ideal
beamwidth. but as the array length

Fig. 1. Average hump-Heme at 30ka increases they settle asymptotically to

1000M for arrays of 50, 100, 200. 500 the width 'of the plane wave spectrum.

and 1000 elements compared with the This is shown again in Figure 3 where

plane wave spectrum (huvyiinel. the average patterns at 30kHz for
arrays of 50. l00. 200, 500 an__d 1000

elements are plotted along 'with the

plane wave spectrum, plotted as the heavy line. As the array size increases the

degraded beampatterns not only tend towards the width of the plane wave

spectrum. but also converge towards the same shape.

AN APPROXIMATE FORMULA FOR THE BEAMWIDTH LIMIT

Having shown that the angul'ar width of the plane wave spectrum represents the

limit to the resolution achievable by an array in an Inhomogeneous medium, an

approximate expression for this width will now be derived. However, it is not

within the purview of this paper to delve into the complexities of random

propagation theory. so a number of assumptions and approximations will be used

without justification except by reference to the relevant literature.

The first of these assumptions is that phase fluctuations dominate the degradation

of array beampatterns. so that amplitude fluctuations might be neglected. and

Equation (13) re-written as

m) = exp[(82)(Cs(r) - 1)]. (15)

It is then noted that the plane wave spectrum is obtained from the Fourier

transform of the coherence function. and so its angular width is inversely

proportional to the width in wavelengths of the coherence function. The constant

of proportionality ls easily determined empirically. and if the width of the

coherence function. WC. is defined as the separation at which Its value falls to 0.3

of maximum. then the limiting beamwidth. 9",“. is the half-power width of the

angular spectrum. given by
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elim = V4wc' r (16)

and from Equation (5)

cs(wc) = 1 + Mom/<52). (m

For a wide range of conditions to be found in the ocean. the phase correlation

function Cs may be approximated by [111

Cs(rl = expl-rzlazl. (18)

where a is the mean scale size of the inhomogeneities in the medium. so Wc is

then obtained from

1/2

wC = .{JnFZ‘SZ-f’fl (19)

 

The phase variance <82) is given by [ii]

<52) = @(ihkzal. (20)

where (uz) is the variance of the refractive index fluctuations, generally about 1.0 x 10—7

in the ocean. but the scale. a. may vary from less than a metre to several hundred

metres. depending on the underlying mechanisms. In the computations for Figures 2

and 3. a value of 20m [7] was used for scale size a.

DISCUSSION AND CONCLUSIONS

Equation (i6) above. a_l__ong with either a measurement of the mutual coherence

function or knowledge of the parameters a and ('12), allows a reasonable estimate

of the best angular resolution achievable from a sonar array. This information

obviously contributes to the selection of the most cost effective array for any

particular system.

The shape of the average beampattern may then be determined from either Equation

(14) or (12) for a uniform line array, or Equation (8) for the more general case.

Finally, it should be pointed out that the expected beampattern represents the

angular response of a system with time averaging over a number of pings.

Individual realisations of the beampattern may vary considerably. and the theory

presented here says nothing about t is variability. If the spatial scale of the signal

fluctuation is small compared with the array. the main lobe of individual patterns

will be similar to the average, and most of the variability will be in the sidelobe

re ion. if the scale of the signal fluctuations is larger than the array. however.

individual patterns will approximate to the unperturbed directivity function, but the
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apparent pointing direction of the main lobe will vary over roughly the width of the
plane wave spectrum. This variation In apparent signal arrival direction may be
significant in system design.
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