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INTRODUCTION

,The problem to be considered is the degradation of the directivity pattern of a
linear receiving array due to scattering in a random transmission medium. Many
authors, eg.[1,2], have investigated the effects of random variations in the
phase and amplitude sensitivities of radio and sonar arrays but in this case,
where the phase and amplitude fluctuations are due to distortion of the
propagating wavefront by the medium, the variations are partially correlated
along the line of the array.

Theoretical expressions for the time-averaged beampattern [3,4] of a line array
in the presence of correlated phase and amplitude fluctuations as well as its
variance [5] have been given previously, but to date this theory has no
experimental confirmation. Before performing experiments to provide such
confirmation, 3 series of computer simulations has been carried out, based on a
conventional beamforming algorithm and using signal fluctuations representative
of those expected in the ocean when scattering is caused by a temperature
microstructure.

Examples of statistical results from these simulations are presented and good
agreement with the theoretical predictions is demonstrated. The potential
advantages of the simulation technique over the theoretical approach are also
discussed.

THEORETICAL ARRAY PERFORMANCE

An analytical expression for the effect of correlated phase fluctuations on the
time-averaged directivity pattern of a line array was first derived by Berman and
Herman [3]. By assuming that the correlation of the signal fluctuations between
elements of the array depends only on their separation, Lord and Murphy [4]
simplified the Bermans' equation and also included the effect of amplitude
fluctuations. '

Because phase fluctuations have a more dramatic effect on the array response
than amplitude fluctuations, phase only will be considered in the examples that
follow.

In this case the expected mean square beampattern is [4]

N-l

E[<Y2>] +201 — n)cos(nY)exp[<¢2>(p(nd) - 1)] (1)
n=1

where N is the number of elements in the array,
d is the separation between elements,
<¢2> is the mean square phase fluctuation,
p(nd) is the phase correlation at separation nd

and Y = kdsine, with acoustic wavenumber k = anl.
e is the bearing angle relative to the array normal.

67

   



  
 

   PFIOC. INST. ACOUSTICS VOL7PT3 1985

The variance in the expected pattern was derived by Brown [53 and is given by

N-l N N-l N
V[<Y2>] 1&2 Z Z Zexp[<¢2>{p(!m - nld) + p(lj - kld) - 2}]

n=1 m=n+l j=l k=j+l

X {cos[(n — m - j + k)y](exp[<¢2>R] - l) (2)

+ cos[(n - m + j - k)y](exp[-<¢2>R] — 1%

R = o(|j - nld) - 9(Ij - mid) + p<|m - kld) — p<|n - kid) (3)

Fig.1 gives an example of the use of these equations. The solid line shows the

ideal beampattern of a 10 element uniform line array, with X/Z spacing, at lOkHz.

The dashed line is the average pattern with a mean square phase variation of l

radian and a correlation function as described in the following section. The

dotted line shows the average plus three standard deviations, which represents

the maximum level to be expected.

The scale size of the correlation function in this example is 0.6m, which is

comparable with the array length of 0.675m. The results obtained depend strongly

on this ratio of the correlation scale to the array length.

THE MEDIUM

In order to estimate the level of phase fluctuations to be expected and the

associated correlation function, it is necessary to consider the properties of

the medium and their effect on sound propagation.

There are many scattering mechanisms in the ocean, and their relative importance

depends on the acoustic frequency and the propagation range. In this study the

interest was in high frequency short

range propagation and under these

conditions, neglecting transient
phenomena such as fish and bubbles,
the most significant contributor to

scattering is the temperature
microstructure.

This microstructure can be modelled by

an empirical one-dimensional spatial

wavenumber spectrum of the refractive

index, formulated by Medwin [6] from

measurements in the upper ocean and

_25 shown in Fig.2.
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Fig.1 Ideal pattern (solid line), 10

element lOkH2 array: average (dash-

ed) and av + 3 std.dev. (dotted) for

lrad rms phase variation, scale 0.6m
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This model is based on the concept

'that temperature, and hence refractive
index, is a passive contaminant of the

turbulent water motion. The idealised
form of the spectrum, @(K), outlined

by the discontinuous straight lines,

is divided into 4 ranges, separated by

the wavenumbers Km, Kt and KO.
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Fig.2 Typical measured wavenumber Fig.3 Spatial correlation function
spectra for refractive index (solid of refractive index computed from
lines) and idealised form (dashes). idealised spectrum of Fig.2.

Kinetic energy is put into the source range by forces of winds, tides, currents
and so on; the inertial range contains the turbulent eddies which obey a five-
thirds power law; the transition range is an arbitrary bridge between the source
range and inertial range; in the dissipative range energy is dissipated by
viscosity and temperature fluctuations are smoothed by diffusion. Medwin assumed
that the spectrum was truncated below Km and K0.

The general equation for the spectrum is [63

O KSKm

¢m Km < K s Kt

¢(K) = ¢m(K/KE)-5/3 rt < K 5 K0 ' (A)

0 K > KO

@m is related to the mean square refractive index fluctuation <u2> by

¢m = 2<u2>ISKt (5)

and the boundary wavenumbers are given by

Km = ("/2)(1/d + 1/(h - d)) (5)

K0 = (an/2)‘3/“(e/D3)“" (7)
Kt = 0.5(KmKo)1/2 > (8)

where d is the observer depth, h is the total water depth, n is a dimensionless
constant generally taken as 0.59, e is the rate of kinetic energy dissipation per
unit mass and D is thermal diffusivity.

The spatial correlation function of the refractive index fluctuations, Cu(r), is
obtained from the spectrum using the Fourier transform relationship:
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l 0°sinKr
Cu(r) - '/c; Kr G>UCK)dK (9)

<u2>

where r is Spatial separation.

Fig.3 shows a typical correlation function, calculated for an observer depth of
100m and a water depth of 200m. The mean scale size of the temperature
inhomogeneities, a, is given by

a =fC (r)dr (10)
0 ll ’ .

and in the example, Fig.3, a is 0.6m which is in general agreement with
published experimental data. ‘

There is no similar model for predicting the level of temperature fluctuations,
but it is generally found that the mean square refractive index variation is in
the order of 10-3.

PROPAGATION

There exist many theoretical treatments of wave propagation in random media, but
there is much experimental evidence to support the single scatter theories
described, for example, in the books by Tatarski E7] and Chernov [8]. The
'conditions necessary for these theories, which rely on small scattering angles,
are that both the inhomogeneity scale size and propagation range be large

- compared with the acoustic wavelength, and that the range be greater than the
Fresnel distance associated with the inhomogeneities and less than the distance
at which multiple scattering occurs.

These conditions are expressed as

kz >> 1 (range) (11)

ka >> 1 (scale size) (12)

42/ka2 >> 1 (Fresnel distance) (13)

zv< l/(k2<u2>a) (single Scattering) (14)

and within these limits the mean square phase fluctuation is

<¢2> = <u2>kzza (15)

and the correlation function of the phase fluctuations transverse to the
propagation direction is identical to that of the refractive index variations,
whilst along the direction of propagation the fluctuations are essentially
completely correlated.

A worst case estimate of the level of phase fluctuations may be obtained by
setting the range equal to the multiple scattering distance, and by combining
eqs(14) and (15) the mean square fluctuation is found to be 1 radian. This is the
value that will be used in the examples. In practice the multiple scattering
range varies from about 100km at lOkHz down to 10m at lMHz.
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RUN N0. 1 2

Fig.4 Phase variation at each array element is obtained by
interpolating between data points in a random phase file. A new
section of phase data is used for each realisation of the beampattern.

BEAMPATTERN SIMULATION

The amplitude of the output from an N-element uniform line array, having no
shading or steering corrections, in response to a signal incident from direction
6 is

 

N

me) =% Zoom, + isinwn) (16)
n=l

w“ = nkdsine + ¢n ‘ V (17)

where ¢n is the phase deviation at the nth element.

To carry out the simulations, data representing the phase variations in the
incident wavefront were generated using a method described by Buckley [93. The
appendix to Buckley's paper gives a numerical method for combining any power
spectrum or correlation function with a set of uniformly distributed random
numbers. The result is a random series, corresponding to a specified distance in
the medium, with a Gaussian distribution and having the required correlation
function.

For each simulation the values of the on are taken from a small portion of the
phase data which represents a length equivalent to that of the array. The phase
at each element is linearly interpolated between the phase data points as shown
schematically in Fig.4.

Subsequent simulations can then be performed by moving the starting point of the
array to a new position within the phase data file, thereby using a new length of
phase disturbance information. This new position may be at a fixed interval
through the file, at a random interval or even within another independent file of
phase data. ‘

A typical sequence of beampatterns obtained in this manner is shown in Fig.5.
These are part of a set used in producing the example results in the following
section, and the parameters used will be given there.

It was noted in the previous section that the transverse phase correlation
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Fig.5 Typical sequence of simulated beampatterns, plotted on a linear

scale. Array details and phase fluctuation statistics are as in Fig.1.

function should be identical to that of the temperature fluctuations but that

along the line of propagation the phase fluctuations are completely correlated.

This variation is easily incorporated in both the theory and the simulation, but

the effect is small and only noticeable at large bearing angles so, to save

computing time, the change of correlation with bearing has been neglected in

these examples.

EXAMPLE RESULTS

Typical results are presented in Fig.6. As in Fig.1 these are for a lO—element

uniform line array with A/Z spacing. In each case the mean square phase

fluctuation is 1 radian and the correlation function is as shown in Fig.3.

Frequencies used are lkHz, lOkHz and lOOkHz, giving array_lengths of 6.75m,

0.675m and 0.0675m which are respectively greater than, comparable with and

smaller than the correlation scale of the phase fluctuations. The sequence of

beampatterns shown in Fig.5 are at lOkHz.

Figs.6a, 6b and 6c show the average responses at lkHz, lOkHz and lOOkHz

respectively. The solid lines are the theoretical predictions, eq(1), and the

dashed lines are the averages computed from 100 realisations of the simulated

beampattern. The phase data were taken from a random position in the phase file

for each realisation.

Figs.6d, 6e and 6f are for lkHz, lOkHz and lOOkHz reSpectively. The solid lines

show the theoretical average plus three standard deviations from eqs(2) and (3)

and the dashed lines are computed from 100 realisations, as in the case of the

averages. For comparison the dotted lines show the maximum levels achieved

throughout the simulation run.

DISCUSSION

The good general agreement between the theory and simulations can be seen from

Fig.6, and this gives confidence in the results, but it is noted firstly that

the agreement‘is less good in the lower frequency examples and secondly that

results are not as good for the variance as for the average response.

The reason for the discrepancy at low frequencies is that the length of the

array - 6.75m at 1kHz - is comparable with the equivalent length of the phase

data file - 10m in these examples - and it is not possible to obtain a large

number of statistically independent sections of phase data. Results can be

improved by generating a new set of phase data for each realisation of the
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Fig.6 Results for 10 element array with l rad. rms phase fluctuation,
correlation scale 0.6m: average beampatterns (a,b,c) and average plus
3 std.dev (e,d,f). Solid lines are theory, dashed lines are simulation
statistics and dotted lines are maximum simulation levels achieved.
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beampattern, but at the expense of considerably increased computing time.

The discrepancies in the variance are mainly because both the theoretical

estimate of variance and the use of average plus three standard deviations as a

measure of the maximum level assume a Gaussian disrribution, whereas the

distributions found in the simulations are skewed towards a low level at bearings

where the average array output is high and skewed towards a high level where the .

array output is low. As can be seen from the examples, this means that the

theoretical estimates of both average and variance tend to be low where the

array output is high and vice versa. This effect is compounded when the average

and variance are combined in the plots of average plus three standard deviations.

Better agreement in the results is possible by increasing the number of

realisations used, but an order of magnitude increase is necessary to gain a

significant improvement. lOO realisations were used for these examples to make

the time taken comparable with that required to evaluate the theoretical

equations. Computing the theoretical average presents no problems but the

variance, eqs(2) and (3), requires the evaluation of a quadruple summation and

the time taken is proportional to the fourth power of the number of elements in

the array. The theoretical results for the examples took about 50 seconds each

on a VAX 11/780, so an array of 100 elements would have taken about 6 days! The

time taken for the simulations, however, is simply proportional to the number of

elements and the number of realisations. 100 realisations of 100 elements takes

less than 10 minutes.

Although the examples were produced on a large computer, the simulation

procedure is quite practicable using a desk-top computer; the programs were

originally developed on a small machine. The time needed to evaluate the

theoretical equations becomes ridiculous on a desk-top with arrays of more than

about 10 elements.

The other advantages of the simulation technique are firstly that the array may

be shaded or steered or have non-uniform spacing ~ the theory only applies to

uniform broadside arrays - and secondly that statistics may be computed for which

analytical results are not available. Examples include the variation of the beam

pointing direction and the average beamwidth. These additional statistics make

it possible to estimate, for instance, the probability of detecting a target in

the nominal beampointing direction, information which is useful in evaluating a

practical sonar system. -

CONCLUSIONS

The examples presented show that the statistics obtained from simulations of

beampatterns with correlated phase fluctuations are in agreement with theoretical

estimates of the average directivity pattern and its variance, which, in the

absence of experimental evidence, gives confidence in the results. The number of

realisations used for the simulations were within the capability of a desk-top

computer, and the simulation technique has the advantages that less computer

time is required for large arrays than is needed to evaluate the theoretical

equations and that statistical results may be computed for which no analytical

expression is available.
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