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INTRODU CTlON

The story is ofien told of the tourist asking the country dweller how to get to some place
or other. "If that's where you want to go." comes the reply. "I wouldn‘t start from here."
This answer might be wiser than it looks. In this paper, the point in question is a
beampattem. described in one or two dimensions and at a specific frequency or, perhaps,
over aband of frequencies. But how to get to that point depends very much on the starting
position.

If the beampattern is specified simply by beamwidth and sidelobe level. and complete
freedom is allowed in the design of the array then it is a simple matter of selecting a
uniform linear or planar array of the appro riate dimensions and applying one of the many
shading schemes in common use. Real lie, however, is more complicated. Perhaps the
aperture is restricted. or a portion of it is already occupied by something. or the array has
to conform to a three dimensional surface. Perhaps an otherwise standard beampattern must
be modified - by the introduction of nulls, say - or perhaps the array already exists, but
its measured directivity is not as predicted and the excitation that produced the
experimental result must be found.

 

In practice. problems such as these are usually tackled by trial and error or by computer
optimisation techniques (which is still trial and error really) - methods which are time
consuming. or costly, or both. This paper describes a method which uses least-squares
approximation to find a set of complex weights that will produce a given beampattern from a
given array. Success is not guaranteed - the desired directivity function may not be
realisable with the specified array or the complex weighting scheme may not be compatible
with a practical beamformer - but the method requires little effort to implement on a small
computer and the results are easily checked.

THE METHOD

  

Consider the beamformer architecture shown in Figure 1. There are a number of transducers.
arbitrarily located in space and the signal is split into a separate channel for each transducer.
Each of these channels is further split into two channels, one of which is phase shifted by 90'
so that the co-phase and quadrature components of the shading coefficients may be applied
separately by the variable attenuators. The outputs from each co-phase/quadrature pair are
then recombined and passed to the power amplifiers and transducers.

  

This structure allows the real and imaginary parts of the shading coefficients to be
separated which is convenient for the mathematical formalism, but in practice the results
may be expressed in terms of amplitude and phase, or equivalent time delay. and used
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Fig.1 Beamformer architecture. Fig.2 Coordinate system for computing

array directional response.

with a more conventional beamformert Note also that although a transmitting array is
described here. the method may equally be applied to receiving arrays.

Figure 2 shows a transducer, with directivity function G(9,w). located at an arbitrary point (ray)
in Cartesian coordinates, Although, for simplicity of notation. only the XY plane is considered
here. the method is generally applicable to 3—dimensional space. The sound pressure Pie)
due to a signal of frequency w emanating from this transducer. observed in the far field in
direction a and normalised relative to an imaginary reference element at the origin is

Fte) = 0(9.ulexpii(ur + till (1)

which may be expanded to give

PIG) = Gie,ulexp(iu1)(cosu + isinu) i2)

and

u = u(xsin6 + ycosollc (3)

The expiiul) time dependence may be dropped, and the output from the array of N
transducers determined by representing each transducer as a pair of identical elements. located
at the same point in space, one driven by the co-phase channel and the other by the
quadrature channel. if the weighting cceffictents are Al, A2,...,A2N, the total output is

2N

PM, = ZGniewiAfllcosu v isinu) (4)Hal
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Transducer position coordinates and directivity fimctions are duplicated for each pair of odd
and even It's to correspond with the beamformer architecture. so for even I:

G”(9,u) = erlaw) (5)

and

"Jam = {klxflsine + yncoss) Hr odd (6)
un_1 - 7r/2 ;n even

where k is the wavenumber, (Me.

The array output may be separated into its real and imaginary parts and each equaled to
the real and imaginary parts of the desired heampattern, which must be known for M
combinations of a and u. A system of linear simultaneous equations results which may be
solved for the shading coefficients A,‘ if M = N precisely, but generally. of course, M
and N are diffetent. The set of linear equations is

AlvlJ ’ A2“t.2 * ‘ ‘ ' * Az~"1.2~ = “'1
AIVZJ * ’12"2,2 " ' ' ' + A2N"2.2N = “’1 (7)

Ai"2M.1 * Az"2M.2 " ’ ' ‘ * A2N"2M,2N = “’1

v _ {0n(9m,um)cosun(9m.um) ; In odd (8)

"L" _ Gfllsmmm) sinunlammm) ; m even '

RelDle .u H in: oddw = { "v M (9)
”' ImlD(9m.Hm)) ; m even

where, as with theG”. the combinations of a and u have been duplicated, and for even m
9”, = 9”"l and um = and.

The best approximation to the shading coefficients A”. in the least squares sense, ma be
found by defining a set of vectors. V", formed from the simultaneous equation matrix 1]:

V1 = ("1.1 -"2,1 " ' ""2M.1)

V2 = (“1.2 -"z.2 - ' ‘ ‘ ' “2M,2)
‘ (10)

V2N = ("1,2N- V2.2N- ‘ ‘ ' ' VZM,2N)

W=(wl,w2,.-.,w2M)
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the shading coefficients are determined from the orthogonality relationships [1]

((A1V1+ 142V2 + - - - + AZNVzN) — Wl~V,l = 0 (11)

which yield a system of 2N equations

(v1 . vim1 + N1 . vzmz 4» - - - + N1 - V2~M2N = v1 - w
(v2 - vlml + (v2 - vzm2 + - a - s (v2 ‘ VZNJAzN = v2 . w (m

(VZN - v,)Al + (V2N - vzm2 + - - - + w“. V2~M2N = v2”. w

in the 2N unknowns. These are the normal equations for the approximation and may be
solved, for example. by straightforward elimination or else by using the simultaneous
equation solving/matrix inversion routines available with most computers.

SOME EXAMPLES

A simple 10 element line array with half-wave spacing is sketched in Figure 3A. Chebychev
shading for -30dB (as listed in Table 1) results in the beampattern shown in Figure 4.

Given the array and the beampattern, but [mowing nothing about Chebychev shading,
suppose that it is necessary to reproduce the beampattem. If the array geometry and a
random selection of 15 ints from the beampattem are fed to the least-squares algorithm,
a set of weighting coe tcients (listed in Table 2. column A) are produced which result in
the beampattern shown by the solid line in Figure 5A The crosses represent the 15
random points“

The pattern obtained is a reasonable approximation to .
the requirements: it passes within a fraction of a dB . A
of all the defining points, the beamwidth is right, and
none of the sidelobes exceeds -30dB by more than '
ldB. Furthermore. the magnitudes of all the estimated .
weighting coefficients are within 2% of the Chebychev .
weights from Table 1. This would all be quite
acceptable in a practical system. This is a hypothetical 1/2
case, however. not a practical system and it is noted.
in particular, that the pattern lacks symmetry and that
there are a lot of awkward little phase shit]: in the
required weighting coefficients.

1
.
.
.
.

>.
.
J
.
‘

“
.
4

.
_
_
_
_

These snags can be overcome simply by making the
set of specifying points symmetrical about the 0' axis.
The result of duplicating each of the random points, Fig. 3 .Sketch showing geo-
reflected about the 0" axis, is shown in Figure SB, ' metry of (A) line array and
with the estimated weighting coefficients listed in (B) curved array.
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10 Table l
-30dB Cliebydlev Shading
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Fig 5

Beumpattems with estimated weighting
coefficients: (A) random selection of
data points from -30 dB Olshychev
pattern. (B) symmetlical random data
and (C) data defining main beam and
sidelobes. Crosses show data.LE
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Table 2 \
Weighing coefficients to approximate the Otebyohev -30dB beampottern.

A: 15 random points.
B: 30 random points, symmetrical about the 0' axis.
C: 11 points defining main beam and sidelobes.

  

  
Element
Number
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column B of Table 2. The pattern is now symmetrical. and the weighting coefficients are
all real. but thedesired uniform -30dB sidelobe level has not yet been achieved.

The final refinement is to forget the random selection of specifying points and, instead. to
define the desired features in the heampattems - in this case the peak and -JdB points on
the main beam and the peaks of the
sidelobes. Feeding these data to the
least-squares algorithm produces the
beampattern shown in Figure 5C and the
weighting coefficients listed in Table 2
column C. Now, the beampettem exactly
reproduces the original in figure 4, and
the weights, to within 0.02%, are identical
to the Chebychev coefficients.

The objective has been achieved. but
some additional complications may now be
introduced: The beampattem shown in
Figure 4 has a null at -53'. Suppose it
is required to move that null to -60'.
The data used to generate Figure 5C were
modified by replacing the point specifying
the sidelobe at -64' with one defining a
zero at -60". The result is shown in
Figure _6 (note that the vertical scale has
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Fig 6 Beumpattern using coefficients
estimated from Chebychev
-30dB pattern with null at 60'.

Proc.l.0.A. Vol 13 Part 2 (1991)

 



 

Proceedings of the Institute of Acoustics

SHADlNG COEFFICIENTS FOR ARBle BEAMPATTERNS

been expanded slightly). and the shading i. Table 3
coefficients listed in Table 3. It cannot be Weighting for null at -60'
denied that there is a deep null at —60'.

Element
Returning now to the beampattern data used Mum,El
to produce Figure 5C. consider a change of
array shape as follows: each element of
the line may shown in Figure SA has been
projected radially onto the circular arc that
passes through the original end elements
and deviates from the straight line by one
wavelength at the mid-point. This is shown
schematically in Figure 33.

B
I   

  

 

   Anyone who has investigated curved arrays
will know that this amount of curvature will
completely wreck the beampattern, as
demonstrated in Figure 7A. It is possible to
introduce time delays to compensate for the
deviation. but the resulting beampatterns
are still inferior to those obtained from a
imit‘orm line array. and there are no standard shading schemes to control sidelobe levels.
Feeding the data to the least-squares routine. however, gives the weights listed in Table 4
which generate the beampattem shown in Figure 7B. The result, once again, is to
reproduce the original pattern from Figure 4.
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Fig 7 Bumpatterns for curved array: (A) Chebydlev ~30dB coefficients for line
array and (B) coefficients estimated from data defining main beam and
.sidelobes.
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Table 4
Weighting for curved urroy

DISCUSSION AND CONCLUSIONS

The examples presented here show that it
is generally possible, as the title suggests.

to find shading coefficients to produce an
arbitrary beampattem from a specified

Element
Number

H
I   

  
a few points that should be born in mind
when specifying the desired beampaltern.

 

   
The first should be obvious. The algorithm
does not lcnow anything about your required
beampattern but the points you supply. The
curve that fits these points is not

necessarily unique - the bee atterns

shown in Fi ures 5A, SB and C, for

example. all it the specifying data used to
generate Figure 5A. To get the best results
the data should identify the important
features in the pattern such as the main
beam, sidelobe levels, null positions and so
on. And it shoUId be remembered. when specifying sidelobes, that they are not necessarily

in phase with the main beam.
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The next point is that if symmetry is required in the beampattem. then the specifying data

should also be symmetrical about the same point/axis.

Another matter related to the question of symmetry is the choice of the origin of

coordinates used to define the array element locations. If there is an axis of symmetry the

origin must lie on this axis or the results will be meaningless. If there is no symmetry the

origin must lie at the acoustic centre of the array, but how that is found is another

problem!

Finally. there has not been space in this short paper to delve into matters such as the

directivity and frequency response of the transducers making up the array. how to deal with

steered beams or how to handle beampattems specified ova a range at frequencies. A

glance at Equations (1) to (12), however, will confirm that these points are all accounted

for in the algorithm. or could be incorporated with a little ingenuity.
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