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1. INTRODUCTION

Underwater acoustic wave propagation problems deal with the solution of

representative partial differential equations. These equations, which govern

realistic physical underwater acoustic phenomena, are all regarded as wave

equations. Because of the complex nature of the sea water medium, the various

wave equations can be very complicated, and permit a closed form solution

only in simple cases. Thus, for simplicity, specialised approximations to

these problems are considered, and a number of wave equations are in

existence in different forms, each having its own advantages due to special

approximations or treatments.

The approximations made generally result in a loss of accuracy or limit the

range of validity of the solution. Even when these approximations permit a

closed form solution it usually involves special functions, integrals, etc.

which are often not convenient to evaluate. In such situations, numerical

solution of the wave equation may offer significant advantages by permitting

treatment of more realistic environments. The model described in this paper
embodies one such numerical method, and employs an implicit finite difference

(IFD) scheme for solving the parabolic approximation to the wave equation. It

is based largely on work published by Lee and Botseas fl].

The particular model, however, is perhaps not relevant to the main theme of

this paper, which is to give an insight into the internal workings of a

propagation model, the mathematics involved, and the computer implementation.

2. UNDERWATER ACOUSTIC WAVE PROPAGATION

In this Section, the general underwater acoustic propagation problem is
formulated, and the approximations that will be used to reduce the problem to
a computationally tractable form are introduced. The limitations that these
approximations impose on the solution and the conditions under which they are

valid are discussed.

2.1 The Governing Wave Equation

“Acoustic propagation in the ocean medium for a harmonic point source is
governed by the reduced wave equation, a homogeneous Helmholtz equation, of

the general form
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V2p + kinzp = 0, (1)

where k0 is the reference wavenumber, «Vco,

n = n(r,z) is the refractive index, co/c(r,z),

p is the acoustic pressure,

V2 is the Laplacian operator,

cO is the reference sound speed,

c(r,z) is the sound speed at range r and depth 2,

f is the source frequency and w = 2nf.

Because there is' rarely sufficient oceanographic information» available to

warrant a full three—dimensional solution to the wave equation, the first

approximation will be to consider a two—dimensional version. To include the

radial spreading experienced by a point source, cylindrical coordinates must

be used, and Equation (1) takes the form

32p 1 pr 32p 1 32p
2 2+—2——+k:n2p=0. (2)

3r r Br 32 r 3
——— + — —— +

 

However, firstly because of the lack of oceanographic information mentioned

above and, Secondly, because only the plane containing both source and

receiver is generally of interest, the azimuthal variation may be neglected.

The two dimensional form of Equation (1) can then be written as

32]) 13p 32p 22
2 + kon p = 0. (3)——— + - -— +

3r2 r ar 82

 

The solution of Equation (3), with its relevant boundary conditions, requires

certain environmental information, particularly the sound velocity profile

(SVP), and surface and bottom conditions.

When -the ocean medium (possibly including the sea bed) is uniformly

stratified, ie. when the density, refractive index and thickness of each

layer are range invariant, the problem is defined as range-independent. If

the ocean environment is not stratified uniformly. or if the physical

properties (particularly the SVP or the water depth) vary with range, the

problem is range—dependent. In this paper the environment is- assumed

range—dependent, although solutions to range—independent problems are always

available as a subset.
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2.2 The Parabolic Approximation

In most ocean environments, long range, low frequency sound propagation is

dominated by rays having small grazing angles since rays propagating at steep
angles are attenuated by penetration and absorption in the sea bed. For
efficient handling of this class of problems, Tappert [2] introduced the

parabolic equation (PE) approximation method which decomposes the elliptic

wave equation into two equations through the choice of an' arbitrary
separation constant.

The method begins by expressing the acoustic pressure, p(r,z), in Equation

(3) as p(r,z) = u(r,z)v(r), where v(r) is strongly dependent on r while

u(r,z) depends only weakly on r. This expression may be substituted into
Equation (3) to obtain

1 1 2 2 2
u vrr + E-vr + v urr + uzz + I + ;-vr ur + kon u = 0. (4)

Note the use of subscripts as shorthand for partial derivatives. Now, in
order to cause the left hand side of Equation (4) to vanish, if k0 is used as

a separation constant, it is necessary that

1 2
vrr + — vr = —kov (5)

r

and

1 2
2 2 2

Frr + u22 + [ ; + ; vr]ur + kon u] = kou. (6)

Upon rearrangement, Equations (5) and (6) become

1 2 .
vrr + —-vr + kov = O (7)

r ,

and
V 1 2 2 .2

urr + uzz + ;-+ ;-vr ur + k0 n — 1 u = 0. (8)

Equation_(7) is a second order ordinary differential equation, whose solution
for an outgoing wave is simply '

v(r) = Hél)(kor), (9)

Proc.I.O.A, Vol 12 Part 2 (1990)
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where Hél)(kor) is the zero order Hankel function of the first kind.

Thus, once the field for u has been found it is only necessary to multiply by

the Hankel function to reassemble the sound pressure field.

Applying the far field approximation, kor >> 1, Equation (9) can be

approximated by

1/2
2 n

v(r) = [ ] exp [i[kor — — (10)

nkor - 4

Using this expression to simplify the coefficient (1/r + (2/v)vr) in Equation

(8) leads to

 

. 2 2
uIr + uzz + 2ik°ur + k0[ n (r,z) - 1]u = O. (11)

Finally, if the fractional change in ur over a wavelength is small, then

Iurrl < IZikourI. This inequality, the paraxial approximation, allows the UH.

term in Equation (11) to be dropped and, with some rearrangement, gives

1 2 1
ur = —ko[ n (r,z) — 1]u + —uzz. (12)

2 Zko

This is the parabolic equation (PE) introduced by Tappert [2].

2.3 Validity and Limitations

Equation (12) above is the conventional PE, widely used to predict
transmission loss in underwater acoustics. It should be stressed at this
point that this is an approximation to the full wave equation, embodying

simplifications that allow a solution to be obtained within the limits of

current computing capabilities. One major limitation that is not immediately
clear (although it is obvious in more formal derivations [3]) is that the
back—scattered field is neglected; the approach is thus usable only for
propagation loss predictions, and cannot, for example, model reverberation.

Using the parabolic approximation imposes another important limitation: the

validity of the approximation is restricted to propagation at angles.close to

the horizontal. It is noted that the PE, Equation (12), may be expressed in
the form
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Bu A + Bq

—— = iko -1 u, (13)

where q is some differential operator involving ko and n, and the

coefficients A, B, C and D, for the Tappert equation, are 1, 1/2, 1 and 0

respectively. By comparing results with those obtained from the full wave

equation [4], it may be shown that the PE in the form of Equation (12) or

(13), and using the Tappert coefficients, is a good approximation provided

the angle of propagation is less than 15°.

Alternative formulations of the PE are possible. In one version due to

Claerbout [5], the coefficients A, B, C and D are 1, 3/4, 1 and 1/4

respectively, whilst Greene [6], by minimising the approximation error,

obtained values of A = 1.430463, B = 1.139144, C = 1.430648 and D = 0.430648.

Comparison with the wave equation shows that the Claerbout and Greene

equations are valid for propagation angles up to about 40°. Noting that the

Tappert equation is the tried and tested method, most variants of the IFD

.program‘ allow the user to implement any version of the PE, provided that the

coefficients A, B, C and D are known.

3. THE FINITE DIFFERENCE MODEL

The finite difference method (not to be confused with finite element methods)

is a general purpose numerical scheme for solving partial differential

equations and whose theory and applications have been described clearly in

many text books (eg. [7]). However, for those not familiar with these

methods, a brief explanation of the basic principle may be given. That basic

principle is that derivatives at a point may be approximated by difference

quotients over a small interval, ie. a¢/ax is replaced by A¢/Ax, where Ax is

small, as follows:

3.1 Finite Difference Approximations to Derivatives

Referring to Figure 1, when a function f(x) and its derivatives are

single-valued, finite and continuous functions of x, then by Taylor’s theorem

f(x+h) = f(x) + hf’(x) + %h2f"(x) + %h3£m(x) + . . . (11.)
and

1 1 3h2f”(x) — 6—11 f"’(x) + . .. (15)f(x—h) = f(x) — hf’(x) + 2—

where, to add Ito the confusion, derivatives are now denoted by' primes.
Addition of these equations gives
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f(x)

   
O 1-]: x x+h x

Fig.1 Sketch showing notation used in deriving finite difference

approximations to derivatives.

f(x+h) + f(x—h) = 2f(x) + hzf"(x) + 0014), (16)

where 0(h4) means terms in fourth and higher powers of h. Assuming that these

are negligible in comparison with lower powers of h it follows that

l.f"(x) = 2 {f(x+h) — 2f(x) + f(x-h)], (17)

:I
"

with an error on the right hand side of order hz.

Subtraction of Equation (15) from Equation (14) and neglect of terms of order

h3 leads to

90:) = fi—h (r<x+h) — £(x-hn, (18)

with an error of order hz.

Equation (18) clearly approximates the slope of the tangent at P by the slope

of the chord AB, and is called the central-difference approximation. It is

also possible to approximate the slope of the tangent at P by either the

slope of the chord PB, giving the forward—difference formula

Proc.l.O.A. Vol 12 Part 2 (1990)
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r'oc) =,17{f(X+h) - tom, (19)

or the slope of the chord AP, giving the backward-difference formula

f'(X) = ,1: (f(X) - f(X-h))- (20)

Equations (19) and (20) can both be written down immediately from Equations
(14) and (15) respectively, assuming second and higher powers of h are
negligible. This shows that the errors in these forward and backward
difference formulae are both 0(h).

In a similar manner, difference equations may be derived for higher order
derivatives, and it is important to note that the accuracy of these
approximations is known and predictable. It should be obvious‘ now that
differential equations can be converted to a discrete numerical form by
substituting the relevant difference formulae for the derivatives.

For example, if the curve shown in Figure 1 were governed by a first order
ordinary differential equation, the backward—difference could be used and the
value of f(x) calculated from the known value of f(x—h), which may be an
initial condition. This would be an explicit relationship. If the central
difference formula were to be used the calculation would include f(x+h) which
may, as yet, be unknown. The problem then requires further information, such
as boundary conditions, for its solution. This would be an implicit
relationship, requiring more computational effort, but is potentially more
accurate than the explicit form.

Matters become more complicated when higher order derivatives and functions
of several variables are considered, as is the case with the wave equation,
.but the principles remain the same.

The finite difference formulation of the parabolic equation may now be
considered, but before proceeding it is-necessary to define some symbols and
concepts.

3.2 Some Definitions

The propagation domain is considered to be rectangular, and lies in the
vertical plane which includes the source and receiver. This domain is
‘partitioned into a set of small rectangular blocks, as shown in Figure 2. The
index m is used to indicate the vertical direction, and the index n to
indicate the horizontal direction. The wave field, u, is a function of (r,z).
At the point (n,m) this means u(r,z) = u(nAr,mAz), normally written as u .
A lower case k is used to indicate Ar and a lower case h to indicate Az. n’m

Proc.l.O.A.,Vol 12 Part 2 (1990) 5.3
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Fig.2 The rectangular propagation domain used in the IFD model.

The forward finite difference of the wave field is the difference between two

neighbouring points, eg. u — u inthe reverse direction it is the
n,m'n+1,m

backward difference, eg. un 1 m — un m. By the central difference is meant
_ v 1

un+lym - un_1,m as the forward central difference and un_1'm — 11ml,Ill as the

backward central difference; both these differences regard un m as the
1

central point. The central difference operator in the z—direction is

represented by 62, and D is the general finite difference operator.

Mathematically, 82 operating on a function f(z) means

52f = f(z + h/2) — f(z — h/2). (21)

To establish a relationship between the two operators 8 and D, by expanding
f(z + h/2) and f(z — h/Z) in powers of h, it may be shown that

h a
52f = ZSinh -— f. (22)

2 a:
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The general finite difference operator D simply represents 3/32 in the z

direction, so

h
s f = Zsinh[ — a}, (23)
z 2

and by using an expansion for sinh'1

N
I
N
Na 1 1 *

D2: [1_—a:+—5:-----. (24)
h 12 9o ,

In addition, the following formulae are required:

a; = 1 — (1/2)ka;, I (25a)

5; = bgk/hz, _ p ‘ (25b)

'7; = 1 '+ (1/2)ka;, H 1 (25:)

x2” = 1 — (1/2)ka;+1 + b;+1s, (25d)

Y; y; -13; :1 + (1/2)ka: — 1:25. I (25a)

3.3 Finite Difference Formulation of the Parabolic Equation

The standard parabolic wave equation, as derived. in Section 2.2, may be

written in the following general form:

3U

'—'= a(ko,r,z)u + b(k°,r,z)uzz,

3r

= Lu, (26)

where

1. =_a(ko',r,z) + b(k°,r,z) ——2—, ~ ' . (27)
- . t ' 32 . -
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a(ko,r,z) = ;k0[n2(r,z) — 1], ( 28)

and
i

b(ko,r,z) = —. (29)
2k

0

A Taylor expansion for u(r + k,z) then leads to

a 1 2 32
u(r + k,z) = l + k—+ —k —2+ “052):

3r 2! 3r

3
= exp k —— u(r,z). (30)

Sr

By writing z = mh, r = nk and u(r,z) = u(nk,mh) = un m, it is possible to use
I .

Equation (30) to solve Equation (26) and retain only the second order

difference. Thus, an explicit formula is obtained:

3 b 2
un+1,m = b * k 3’ ]un,m = &-+ a(k°.r.2)k + -— kaz ]un’m. (31)

r

Using the second order central difference for 322 in Equation (31) gives

bn m
= (1 + an’mk)un + ——L— k(u 2’m hz u +

n,m+1 — n,m un,m—1)' (32)u
n+1,m

This is an explicit finite difference equation by which the field values at a

range r = (n + 1)k can be computed entirely from the known values at the

previous range step, r = nk.

Although the explicit method is computationally simple it has one serious

drawback. The range step Ar = k is necessarily very small because the process

is valid only for 0 < k/h2 5 1/2, ie. k 5 h2/2, and h = Az must be kept small

in order to attain reasonable accuracy. Crank and Nicolson [8) proposed a
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method that reduces the total volume of calculation and is valid (ie.

convergent and stable) for'all finite values of k/h2. The method starts by

splitting Equation (30) in such a way that

[ 1 a ] [1 a J

exp — -— k — u = exp — k — u ._ ‘ (33)2 3r n+1,m 2 3r n,m

‘Expanding the exponential. series on both sides of expression (33) and
retaining only the linear terms leads to

1 3 1 3
1 ——k—r un+1,m= 1 +2—ka—r umm. (31;)

Since '3/3r = a(kb,r,z) + b(ko,r,z)32/azz, Equation (34) becomes '

. .1 , 32

.x [1 —y2—k[a(k°,ri,z) + b(ko,r,z) ]un.+17m

-= 1 + —k a(ko,r,z) + b(ko,r,z) 32—2 un’m. (35)
2

Using' the first term of Equation (24) for D2, and substituting into Equation
(35) gives

1 ‘ 1 2
I: —' ;k[a(ko,r,z) + b(lto,r,z) h—Z 82 ] ]un+1’m

1 1
= [1 + —k[a(k°'.r,z) + b(ko,r,z) —2 8: ] Jun "1' (36)

r 2 _ ,h v ' ‘ .

Substituting for 822 in Equation (36) and writing 5 = k/h2 produces
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[1 _ (1/2)k[a(ko,r,z) + b(ko,r,z)s]]un+1 m

_ (1/2)b(ko’r'z)S Ehnl,m+1 + un+1,m-1]

= [1 + (1/2)k[a(ko,r,z) + b(k°,r,z)s]]un1m

+ (1/2)b(k°,r,z)s[unym+1 + un,m_1]. (37)

Equation (37) is an implicit finite difference equation known usually as the

Crank-Nicolson scheme.

The parabolic equation has now been formulated as a finite difference

equation in two ways: an explicit scheme (Equation (32)), and an implicit

scheme (Equation (37)). The explicit scheme does not need information on the

next (n+1) range level but generally requires a small step size for

stability. The implicit scheme, on the other hand, is unconditionally stable.

Despite the dependence of Equation (37) on the field at the next (n+1) range

level, this equation may be solved given the field at the previous range only

and the necessary boundary conditions at the surface and bottom. From here

on attention will be confined to the implicit formulation; explicit schemes

are not viable for this type of application because of the small step size

required (but see [4] for some conditionally stable explicit schemes).

Equation (37) is particularly amenable to numerical computation, using matrix

methods. It is clear that to solve the parabolic equation the field must be

known at some initial range, and that the appropriate boundary conditions

must be imposed at the surface and bottom of the rectangular propagation

domain. Boundary information is needed at both the present (n) and next (n+1)

range levels, described by u(r0,zo), u(r1,zo), u(ro,zB) and u(r1,zB). The

first two points are the surface boundary points, and the last two are the

bottom boundary points.
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Now, the relationship between D2 and 822 has already been given (Equation
(24)) so, using the definitions given in Equations (25a)—(25e), Equation (37)

can be‘expressed in matrix form:

1 +1 n+1 1 +1 n+ 1

x1 ‘3 5‘11 ° " ° 0 u1 2— fl'11 “o
,1 +1 1 +1 n+1
-2— 5’2“ X2 -fi 0 ° 2 °

1 +1 n+1

0 0 0‘ xm-l '7 8“.114 "1-1 0
1 +1 n+1 1 +1 n+1

o 0 0 u u ' '5 xm “In 5- gr; um+1

1 n l n
Y1 r 3} 0 0 0 “1 2- duo

1 l n

3 Y2 f 5{2] 0 0 “2 0

+ E S — E (38)
1 n

0 0 0 Ym-l fag-1 “m— 1 0
l n l n

0 0 0 ' ' . 2— 5:1 Ym um 2— Bnmum+1

Equation (38) forms the basis of the IFD model. If the appropriate surface
and bottom boundary values are known, along with the field at all depth
points at the present range (n) — which may be the initial field — then the
field at all depth points at the next range level (n+1) is found by inverting
the matrix operator on the left hand side using standard techniques. The
process may then be repeated to advance the computed field in range
throughout the propagation domain in steps of h. The specification of the
initial and boundary conditions will be considered in the next section.

3.4 Initial and Boundary Conditions, and other Complicating Factors

Because an initial boundary value problem is being solved, it is necessary to
specify the field over a depth grid at some initial range to start the
computational procedure. Surface and bottom boundary conditions need to be

Procrl.O.A. Vol 12 Pan 2 (19,90)
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specified, and the treatment of interfaces between layers must be considered.

In addition, the effect of attenuation must be included. These matters will

not be dealt with in detail, but an indication will be given of how they are

incorporated in the model.

3.4.1 The Initial Field

Potentially, _a number of propagation models such as ray tracing, normal mode

theory or the Fast Field Program can be used to generate the starting field.

For many applications, however, it is sufficient to approximate the initial

field by a Gaussian function [2]. This procedure is adopted in most

implementations of the IFD model, with an option for the user to insert his

own starting field if he wishes. A Gaussian beam is considered, where

G = the 3dB beamwidth of the main lobe,
w

Ga = the amplitude of the beam at its peak,

zS = the depth of the source.

The real part (the imaginary part is set to zero) of the starting field at

mth mesh point in the depth direction is then given by

2

nommrzis next-Hrs 111
W

  

3.4.2 Boundary Conditions

In most low frequency sound propagation applications the surface may be

treated as a pressure release boundary, and the field is assumed to vanish at

the surface. Specifying the bottom boundary condition is considerably more

difficult, especially when limited environmental data are available. The

problem may be overcome, however, by assuming that the lowest layer in the

bottom extends to such a depth that the field has been reduced to a

negligible level by absorption.

Absorption is included, both in the water column and in the sea bed, by

making the refractive index complex and inserting the attenuation in the

imaginary part, using the formula

C C a.

"i=[_o] +i[‘2]—— ‘ (1.0)
c cm 27.287527
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Fig.3 Treatment of a Horizontal Interface.

where a is the attenuation in dB/wavelength,

c0 is the reference sound spéed,

cm is the sound speed at the mth depth point.

and um is the refractive index at the mth depth point.

v3.4.3 Interface Treatment

Another problem that arises in the'practical implementation of the finite

difference scheme is the treatment of the field at the interfaces between

different media. The situation is shown schematically in Figure 3. The

subscripts 1 and 2 denote the medium above and below the interface

respectively, p is density and c is sound speed. Interfaces are constrained

_to coincide with depth grid points.

The interface requires a modification to the parabolic equation, which gives

prise in turn to'a change: in the implicit finite difference‘ formulation and
_ its matrix representation (Equation (38)). The new matrix equation is
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D
1 n+1 n+1

X1 -pz 0 0 0 1 U0

9

—1 x2 «5 o o u'z‘+1 0
93

p . .

m—1 n+1
O 0 0 ~-- Xm_1 — pm m_1 0

n+1 n+1
0 0 0 - —1 Km um u:n+1 1

pl
‘

n n

Y1 3; 0 0 0 u1 uo

p

1 yz —2 -- o o u‘z‘ o
"3

+ S S — E (41) ‘
p
m—l n

0 0 O --- Ym_1 pm um_ 1 0

n n
0 0 0 -- 1 Ym uIn u“1+1

Here, pm means the density at the mth grid point. Also, it should be noted

that the definitions of the X and Y are now slightly different from those

given in Equation (25); for a more complete treatment, the reader is referred

to [1] or [4].

3.4.4 Range Dependent Depth Variation

A range dependent model, of course, must have the ability to handle a varying

water depth. This requires that the depth grid, and hence the matrix

equation, (38) or-(Al), changes in size as the range is advanced. This turns

out to be simply a matter of housekeeping within the computer program, points

being added or subtracted as required, and will be discussed further in the

following section.
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4. COMPUTER IMPLEMENTATION

The IFD model exists as a number of variants, and the version presented in
[1] and [4] will be taken as typical and described here. Listings of the
program in FORTRAN will be found in [1] and [4], so details of the coding are
not given in this paper. 'I

The model consists of a main program and: 10 subroutines as shown
schematically in Figure 4. Those subroutines marked with an asterisk are
prepared by the user if required; the subroutine marked with a dagger may be
modified by the user. Input parameters that result in control being
transferred to user subroutines are'as-shovn in the figure. For example, if
input parameter ISF = 1, then control? is transferred to UFIELD, the user
generated initial field, rather than SFIELD, the Gaussian starting field.

A brief description of each subroutine follows.

4.1 Main Program IFD

IFD is the main program and controls execution of the various subroutines
which make up the model. Initially, IFD reads selected input parameters and
performs initialisation of certain variables. IFD then calls on either
subroutine SFIELD or subroutine UFIELD to generate the starting field that is
to be marched out in range. IFD then calls on subroutine DIAG to compute the
main diagonals of the matrices that represent the system of equations at the
present and advanced ranges.

After these preliminary procedures have beenaccomplished, IFD enters a main
loop and continues to cycle in the loop _until the solution has been marched
out to the maximum range requested.

At each new range step, IFD determines whether or not to update the sound
speed profile and/or bottom depths. If an update is performed, IFD calls on
subroutine DIAG to recompute the main diagonals in the matrices. Whether or
_not the diagonals have been updated, IFD calls subroutine CRNK to advance the

I solution one range step. The solution returned by CRNK is then written in an
output file. If the 'solution has reached the maximum range the program is
terminated. If the solution has not reached the maximum range, IFD returns to
the top of the main loop and repeats the above procedures.

be? Subroutine SFlELD

If input parameter ISF = 0, main program IFD calls on subroutine SFIELD to
generate a Gaussian starting field at zero range. ”
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Fig.4 Structure of IFD Computer Program.

4.3 Subroutine UFIBLD

If input parameter ISF = 1, main program IFD calls on the user—written

subroutine UFIELD to generate the starting field.

4.4 Subroutine SVP

When the range of the solution is equal to the range of the next sound

velocity (speed) profile, a new sound speed profile is read in. If input

parameter KSVP = 0, subroutine SVP is called upon to read the next sound

speed profile from_the input data file.

At the present stage of development, linear interpolation of sound speed

values is performed in depth only. Changes in the profiles with range are

abrupt, with no interpolation being performed (but see under Subroutine

USVP). Vertical interpolation of sound speed values is performed in

subroutine DIAG.
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4.5 Subroutine USVP

If input parameter KSVP ¢ 0, subroutine USVP is called to supply an updated
sound. speed profile at each step in range. Subroutine USVP must be prepared
by the user.

Variable KSVP may be used in a computed GOTO statement to transfer control
within user subroutine USVP. When the user no longer needs USVP, KSVP must be

set to zero within USVP. The last profile entered will then be used until the

solution range is equal to the next RSVP. If KSVP is not set to zero, then
USVP will be called at each range step until the range is equal to RSVP, the

range of the next profile. With this option, the user can generate a new
profile, at each range step, and sound speed profiles interpolated in range
may be entered.

A.6 Subroutine DIAG

Subroutine DIAG computes the range-dependent and depth—dependent main
diagonals of the matrices that represent the system of equations at the
present and advanced solution ranges.

Prior to computing the diagonals. DIAG determines the values of sound speed,
density and attenuation to be used at each depth represented by the
corresponding row of each matrix. Linear interpolation in depth is performed

as required. ' ' '

4.7 Subroutine CRNK

subroutine CRNK computes the right hand side of the system of equations,
determines bottom type, sets up bottom conditions at the present and advanced
ranges and then calls on subroutine TRID to solve the tridiagonal system of
equatiOns. If the user is supplying surface conditions, CRNK calls on SCON to
provide them. If the user is supplying bottom conditions, CRNK calls on
user—written subroutine BCON for these conditions.

The treatment of the bottom is complex, depending on the slope of the bottom
and whether the bottom is rigid, an artificial absorbing layer or some other
condition_ supplied by the user. A full description of the bottom treatment
is given in [1]_and [4].

4.8 Subroutine BOON

IThis is an optional user-written subroutine BCON which supplies values of the
fieldqat the bottom at the present and next'advanced ranges. '
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4.9 Subroutine SCON

If the user wishes to supply values of the field at the surface at the

present and advanced ranges, he may do so by rewriting subroutine SCON. At

present, subroutine SCON sets all surface values to zero (pressure release

surface).

4.10 Subroutine TRID

Subroutine TRID solves a system of N linear simultaneous equations having a

tridiagonal coefficient matrix, as in Equations (38) and (41), where all

entries are zero except for the main diagonal and (perhaps) the diagonals on

either side of it.

4.11 Complex Function ENKL

HNKL computes the Hankel function (see Equation (9)).

5. CONCLUDING REMARKS

The IFD propagation model has been described in some detail, and the primary

objective of this paper has been to give an insight into the internal

workings of a propagation model, the mathematics involved, and the computer

implementation. Because of this, the reasons for using such a model, the

relative merits of complex and simple models, the advantages and

disadvantages of this particular model, and many other relevant points have

not been addressed. Such topics, however, are covered elsewhere in these

proceedings.

Nevertheless, a few words about why a potential user should be interested in

the mathematical details of such a model are in order. The first point is

that an estimate of the model's accuracy in a specific application can only

be obtained by understanding the approximations involved in going from exact

solutions to the equations used in the computer code.

Secondly, models such as this are usually implemented as 'research’ programs.

' This means that although they can be extremely flexible in their application,

the user is required to provide a multitude of input parameters (setting up

the input file can take longer than running the program). Some of these

parameters may require subjective choices, which must be based on an

understanding of the models operation. Often it may be possible to decrease

the execution time or the memory requirement by a suitable parameter

selection, without seriously affecting the accuracy. Unfortunately, the

reverse is also true. The wrong decision may considerably reduce the accuracy

with no gain in running time or memory usage.
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Finally. those readers wishing to know more about the IFD model should

consult [1] or [4]. These publications include FORTRAN program listings which

actually seem to work! Further details of the parabolic approximation can be
found in [2] and [3], and the topic has been well represented in the

literature (eg JASA) in recent years. The best source of information about

finite difference methods in general is a suitable text book, such as [7].
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