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ABSTRACT _The Fresnel corrected physical optics approximation has been
used to examine the statistical properties of waves scattered from a
time-varying Gaussian random surface. With certain restrictions, the
first and second order distribution functions of the scattered wave
field have been obtained. Close analogies with the problem of wave
propagation in a random medium have been stressed.

1. INTRODUCTION

Because it is a perennially popular subject in underwater acoustics,
there is_an extensive literature on the theory of reflection and scattering
of waves by a randomly rough surface. Many of the treatments have been
concerned with deriving the appropriate forms to be used for the boundary
conditions [I] and with justifying approximate evaluations of the Helmholtz
integral in either the Fraunhofer [2] or the Fresnel [3] limits. In
dealing with the statistical description of the scattered wave, most
investigations [4] have been limited to derivations of the first two
moments of the field received at a point, or to evaluation of joint
second moments of the scattered field at temporally or spatially separated
points. In addition, many of the results obtained have been restricted
to one of two limits corresponding to slightly.rough (small Rayleigh
parameter) or very rough (large Rayleigh parameter) surfaces. Hence,
while much has been accomplished, important problems remain. Thus.for
example, in a signal processing context, a calculation of the variance at
the output of a nonlinear device whose input is a surface scattered signal
requires knowledge of fourth order moments of the surface transfer function.

In the present.paper the Fresnel corrected physical optics
approximation has been employed to derive, with certain restrictions, first
and second order distribution functions of the field scattered from a time—
varying Gaussian random surface. Furthermore, the formulation is '
sufficiently general to encompass the entire range of Rayleigh parameter
values. »

In studying this problem it has been observed that there exist
extremely close analogies between the small and large Rayleigh parameter
regimes for scattereing from a rough surface andthe corresponding Rytov
(weak scattering) and saturated (strong scattering) regimes for wave
propagation in a random medium. Indeed, much of the impetus for the
present investigation had its source in recent work on wave propagation
in a random medium [5,6]. The similarities between these problems are
not accidental but signify an underlying unity in the physical ideas
involved. Because the surface scatter problem is, in many regards, the
conceptually simpler, it can serve profitably as a pedagogical introduction
to a study of wave propagation in a random medium.

2. SCATTERING REGIMES

Consider the scattering geometry depicted in Fig. 1. It is imagined
that the surface is illuminated by a wave of frequency w = ck (where c
is the wave propagation speed and k the wave number) emitted by an

  



  

omnidirectional point source (S), and that the scattered field observation
point is 0. Denoting the deformation of the surface by z = C({( t),
it is assumed that E is a zero mean, stationary and homogeneous Gaussian
process with space-time correlation function

-<c(§, o'uo, 0)“> =. <:2> ‘I'Qc. c), (1)

characterized by a suitably defined correlation length L.

All the qualitative features of the scattered field are determined
by two parameters A and ¢, which are identical in meaning to analogous
parameters describing the character of wave propagation in a random
medium [5, 6]. The parameter A'is a size scale defined by
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A is essentially the square of the semi—major axis of the Fresnel ellipse
on the surface in units of the surface correlation length. The parameter
0 is a strength measure well known in the surface scattering literature
as the Rayleigh parameter, and is defined as ' -

1io = 2k<cz> 51w . - (3)

The Fresnel approximation can be considered as an evaluation of the
Helmholtz scattering integral by the method of stationary phase. When
the surface is smooth there is a single point of stationary phase located
at the origin for the coordinate system in Fig. 1. When a rough surface
is present the point of stationary phase becomes perturbed away from
the origin if ¢A<1, although the scattered field remains substantially
coherent. However, when QA>1multiple points of stationary phase will
occur. When this happens, the multiple contributions to the scattered
field interfere weakly if o <1,_and there is a dominant.coherent component;
if ¢ > 1 the multiple contributions to the field interfere strongly and
the scattered field becomes incoherent.

3. SUMMARY OF RESULTS

Denote by p(ro, g1, t) the complex envelope of the field at 0, and
let po(§6, g1, t) be the corresponding quantity for a mirror surface. Then
when ll > > 1, the normalized intensity I = |p'/po|2 can be shown to obey
Rice statistics with moments '

. 2'

<1“> = n![l - exp(-_¢2)]n1 F1(—n; 1;w ). (4)
, l'eXP(-¢ )

It is noted that this result contradicts an assertion in [7] that the
incoherent component of the received field obeys Hoyt statistics. The
difficulty can be traced to the neglect of Fresnel corrections in the
development in [7].

In the limit ¢<< 1 an expansion of eqn. (4) indicates that the
lower order moments of I approach those of a log—normally distributed
variable; this situation corresponds, therefore, to the Rytov regime
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Geometry for each array

Fig 1 Equivalent circuit of a piezo—electric element, its radiation
' load and the assumed input components.
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Fig 2 Example of scaling law 3a    
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Fig 3 Example of scaling law 1.

Array in infinite, rigid baffle uses element 1).
Unbaffled array uses element D.

a/A 11 Q 3(11/v) k tan 6

 

0 ma w
0.05 0.90 .12 1 0.28 0
0.05 0.90 12 1 0.28

“P V N m/N -9 kg Ii/zn/s
B 0.107 1 : 1 9.1 1:10 1.67 11.6D , 0.212 1 :1 18.0 x10 9 0.55 71.

Constant voltage. No [—W
steering or tapering. §

Baffled Unhaf‘fled

      
I .- r- 1 1..

"g’
0

3 IL

3 H
P on:.,.g 0
53A "'mm b
:1 \ u

:2 1’la, a Hfix] '1‘]

o
OH

3 '. 2 A
QW
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