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1. INTRODUCTION

A number of papers have recently been published concerning
the"deconvolution" of acoustic impulse responses (e.g. Elliott and
Nelsoan], Kuriyama and Furukawa [2]). These papers have
concentrated on time—domain processing, whereby a transversal
filter pre-processes the signal so that the final impulse response
should approximate a delta function in some least-squares manner.

Although the least-squares criterion is reasonable when one is
trying to achieve zero ouput, as in noise cancellation, it is easy
to contrive examples which show an extremely negative correlation
with psychoacoustic experience in assessing error in reproduced
sound. (E.g. a phase inversion is considered by many people to he
hardly detectable, yet one can hardly do more damage in terms of
r.m.s. error !)

At BAN we have therefore preferred to use frequency domain
processing for generation of speaker and room correction filters,
even though the end product is a conventional transversal filters
operating in the time domain. We can thus give explicit treatment
to the error as a function of frequency, imposing criteria on the
maximum allowed boost at any one frequency etc. etc..

It is a standard result that unconstrained deconvolution can be
efficiently implemented by division of Fourier Transforms.
However practical room responses are non-minimum phase (Neely and
Allen [3]), leading to an acausal inverse. As practical
implementations allow for only a finite "modelling delay" of m
samples, we must constrain the generated filter to have zero
response before t=-m. At first sight, this appears to require an
explicit time-domain least—squares optimisation; however it is the
purpose of this paper to show that such filters can be more
efficiently generated by a processing method based largely in the
frequency domain.

The mathematics used alsoprovides a useful expression for the
final frequency responsa, regardless of whether the implementation
is by time- or frequency-domain processing.
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2. CONSTRAINED DECONVOLUTION

In this section we show how to derive a filter which deconvolves a

given response in a least—squares sense, subject to the constraint

that the filter may extend only a finite number of samples in the

negative time direction. (This duration is given by the

"modelling delay" in a practical implementation).

2.1 Notation
t is the discrete time variable, taking integer values

Upper'case letters denote sequences

0 is the convolution operator for sequences

R: is the convolutional inverse (assuming this exists) of R

R is the time—reverse of R
R[0:m] is a truncated version of R, equal to R over the range

t = 0...m, zero elsewhere

, > denotes scalar product<
5' denotes a sequence with 1 at t=n and zeroes elsewhere.
A

A room response R is considered to he standardised by shifting in

time to compensate for air delay etc., so that its first non-zero

value occurs at t=0. It can be decomposed as

R = “EA
where M is minimum—phase and A is all-pass, and both M and A are

causal (with first non-zero entry at t=0).

2.2 Lemma
The time-shifted all pass responses

{Sn 9 A) n=—-o, .. -1, o, 1, 2, men

form an orthonormal set.

Proof: The autocorrelation of an all-pass is the unit impulse.

1.2. <A , 5.9.1 > 135 j=o
J 0 otherwise.

Hence <55: A , D A > 1 if i=j
0 otherwise.

As required .
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2.3 Theorem
If R is causal and its minimum—phase part H is invertible,
the 1east~squares solution of

x03=8,

subject to the constraint that X(t) = 0 when r < —m,
is given by

X = AIOzmirw H4

where A is the all—pass part of R, and M is the
minimum-phase part.

-I
Proof: LetY=X®M, so thatX=Ym H .

(yGn’UQWOA)
vaA.

Since M and M“ are both causal, the constraint that X
extend at most In samples into negative time translates to
the same constraint on Y.
Hence the problem is equivalent to finding the
least-squares solution Y, subject to the constraint, of

Y o A = so-
Expanding Y as a sum of impulses

y: a"

He thus solve u-m

E ylt').(8; fin) : 3‘7

Using the o‘ttthonormality of the (-5" G A) (lemma 2.2), the
least-squares solution is given by

Then x 0 R

m) = <3.-0A,5a> _
= A(—i) if -m$i‘0

0 otherwise.

Hence Y = A[0' 1T _..m
and therefore X = A[O:m]T® H , as required,

2.5 Corollary
If the modelling delaymis zero, the result of theorem 2.3
reduces to _ _I

x = A(0) . H
that is. the "constrained causal inverse" of the full room resonse
is a scaled version of the unconstrained inverse of its minimun
phase part.
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3. FINAL FREQUENCY RESPONSE

The final, corrected, response is

T -I
xan = (A[0:m] & n )a (Mom

T .

= A[0:m] 0 A........ . . . . . . . . . . . . (3.1)

Three interesting cases arise:

(i) m is infinite.

Then (3.1) reduces to

{0A :50.

As expected, the impulse response is perfect and the

frequency
response is flat.

(ii) m is zero.

Then (3.1) simplifies to

A(0).A

The impulse response is a scaled version of the all-pass

component of the original impulse response, and the

frequency response is flat.

(iii) m is non—zero and finite

Since convolution with an all-pass does not affect

frequency response, and neither does time reversal. the

freqency response of (3.1) is the same as that of the

truncated all-pass response A[0:m].

This is easily plotted for various values of m.

when m is small, the response will show

substantial broad peaks and troughs, the size of which

can be estimated to first order as (the square root of)

the proportion of the energy of A which lies after the

truncation point t=m.
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4. COMPUTATIONAL EFFICIENCY

The minimum-phase inverse H“ is obtained in the frequency domain

by computing its phase as the Hilbert transform of the amplitude

response. The main computational load is in performing Fourier

transforms. Starting from a measurement in the time domain, two

forward and one inverse transform yield M' in the Fourier domain.

—I

The all-pass component A is obtained by convolution A = R O M

As the two sequences R and M' already exist in the Fourier

domain, this involves one more inverse Fourier transform to obtain

A.as a time-series.

It m is zero, the convolution by A[0:m]-r is trivial. Otherwise

one forward and one inverse transform will deliver the final result

as a time series.

Assuming that a Fourier transform of n points requires 4n.log; n

operations (faster algorithms are possible), the 6 Fourier

transforms for the complete computation will take 24.n.log[2]n

operations.

The usual direct methods for solving the least—squares problem

would require of order nJ operations. Harple (3] has published a

clever but extremely complicated algorithm which requires about

131.n3 operations. It can be seen that for n of order 1000, one

would naively expect the frequency domain approach to be faster

by a factor of about 500.

Allowing for the possibility that n may need to be somewhat

greater in the Fourier case in order to allow for "wrap round"

effects, and that n also needs to be rounded up to the next power

of 2, it would perphas be more reasonable to claim an

improvement factor in excess of 150.
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5. DISCUSSION AND CONCLUSIONS

The results reported here would seem to open the way for

room'correction to he discussed more generally in the

frequency—domain, rather than exclusively in the time-domain as

hitherto.

Practical room equalisers, if implemented using transversal

filters, have a restricted extent in both directions, and it has to

be admitted that frequency domain methods do not at present

provide an elegant means of dealing with this. However, in

view of our initial commments about the least—squares criterion,

it may be wondered whether the mathematically more

satisfying constrained least-squares solution has any

psychoacoustic advantage over a straightforward truncation or

windowing of the generated filter.

In vieu of the results on the corrected frequency response, it

would seem that modelling delays of just a few milliseconds are to

be treated with caution. We have yet to confirm this result by

listening tests, however.
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