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To control a random disturbance a measure of the noise is necessary.
In flames the light emission, at C2 or CH wavelengths, provides such
a measure [1]. The coherence of two signals measures the amount of
information of one held in the other. Typically the coherence for
the light and sound ot a flame is high but nonperfect. In the active
control of flame noise there is no time delay between detecting the
light emission and introducing the antisound. This limits the upper
frequency of control and requires the controller to calculate the
antisound as fast as possible. The controller is a digital filter
and the accuracy of two methods of caleulating the filter weights
is discussed below.

The basic model is ot a sampled system with series for input {u} and
output {y}. The latest output sample is thought of as the aggregate
of weighted previous outputs {the autoregressive [(AR) part of the
model} and weighted inputs (the moving average (MA) part).

yx = bk + Bjugo] +oee- * bruk-m = 3,Yk-1 = *** = @n¥k-n
In z-transtorm notation: B{z)¥(z) = B(z)D{(z} e .
where A(z)} and B{z) are polynomials in z and X(2) = E (%527 ).

Gnce the unknown weights {a} and {b} are estimated the system can
be modelled by adigital filter. Two methods of estimating the weights
have been investigated: minimum least sdquares {the ARMA method),
which estimates both [al} and {b} and is implemented by a recursive
digital filter; and by using the impulse response {(the MA method},
which assumes A{z)=l ana which 1is implemented by a nonrecursive
digital filter.

For systems amenable to active control two series can be found which
represent a sample input and output of the desired controller and .
the ARMA method uses these to Eind the weights [2]. The basis ot this
method is to recognise that we do not have grue input and output
samples but close approximations; in which case the time series may
be written in vector form as:
' Y=o08+c¢
¢ contains the samples, § the weights, ¢ is the ercor.
The ARMA method considers the best, or optimal, seolution for the
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weights, B, to be that Eor which _Eq[siz) is a minimum. This may be
L) i=

found by difterentiating and setting to zero:

8= (eTe]'loTI (T denotes transform)
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For lack of bias E[8-8]+@ as New,

For least squares estimation this means E[(¢Te¢)"10Tc]+p. The bias

will be zero if ¢ and E are independent, and if E{c] = # as weil,

If we asgume that the current output can be found from values of the
input only, the MA model, then the output due to an impulse (u°=1:
uij=@ for i#0@) will he: Y= o yl=bl; ceri ¥Yp=bpi oo,
The weights {b} are the values of the impulse response {h} at the
respective sampling times, The impulse response, {hl, of a system
" and its frequency respense, H(w), are a Fourier transform pair so
that once H({w) is estimated {h} and hence the weights, can be found
easily via discrete Fourier transform algorithms.

In general an ARMA model uses fewer weights ana this is important
in flame noise control because each weight means a lenger calculation
time. The choice of order is a problem because to underparameterize
the system means error in estimation. Eykhoff [3] describes a
criterion for judging whether the residual sum of squares is
significantly reduced by increasing the order of the ARMA model. In
Practice the order is selected by the speed of implementation. The
order of the MA model is selected once the impulse response dies down
to quantization levels, Truncating {h} will effect the freguency
response, becoming H' {uw}, of the filter but the differencea from B {u)
can be calculated by Fourier transformation. Forming {h}' need not
result in a useless estimation, see below. The filter response to
a limited iaput must be limited too otherwise the Filter is unstable.

This means ihnl < ®. Since the MA model is a finite impulse response

method the stability ecriterion will always be satisfied, For the ARMA
method the stability criterion is related to the poles of B {z), 1f
the roots of E(z) are inside the unit circle of the Z-plane then the
filter is stable. This test is €asy to apply in retrospect.

In order to discuss the pProblems of implementing the two models in

ore detail a simple system was identified by both approaches. The
Simulator. This was connected to a Computer Automation LSI-2
minicomputer through antialiasing filters, Fig ‘1. H(w) of the
simulator is shown in Fig 2. 1The sampling frequency was B8kHz
throughout the tests. The impulse response of the system is very
short, as we would expect considering the damping of the frequency
response. If {h} is truncated to the first 32 points then B'{w) has
& response virtually unchanged from H{w) . If the input/output samples
from which H(w) was derived are used for least sguares estimation
then a series of ARMA models may be found, each of differing order.
If an estimation of order 32 is taken and H' (u) calculated then it
also is found to be a close approximation to H(w} (only the dip at
~1180Hz is not exactly matched).
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Flame noise control, however, cOncerns input and output signals of
nonperfect coherence. So the coherence between the input and the
output of the simulator was detrimented by the addition of an
independent noise source on the cutput. In order to retain good
coherence over part of the frequency range the additional noise was
low-pass filtered at L@PHz before being added to the output, Fig 1.
The nonpecfect coherence is reflected in the frequency respoense shown

in Fig 3. H(w) is not time invariant and so spectral averaging methods:

do not converge to H{w) over the frequencies where the gignals are
not coherent. An attempt can be made to model {h} of the system but
a Fourler transform of H(w) leads to considerable disturbance before
the time origin of the impulse response., However fi* {w) retains most
of the detail of H{w) if (F} is truncated after point 32. This shows
that the important information is held in these first points. An ARMA
model of the system has the correct characteristics but much of the
detail is lost. This is again a 16-pole/l6-zerc model. The low
frequency noise leads to bias of the BARMA estimate. Although the
residual errors had zero mean (E[g]=0) they were correlated with the
output.

Nonlinearity in the measurements manifests itself as uncertainty in
the estimate of H{as). In the active control of flame noise Hiw) is
calculated using Ross's method [2] and a typical result is shown in
Fig 4. This has an impulse response which has a considerable
disturbance in the noncausal part. If only the first 32 peints of
{f.} are taken and {h}' transformed the result shows the modelling
to be inadeguate. The signiticant part of {h} has not been retained.
This is not surprising for the part holding the maximum in {h is
in the noncausal half. If the impulse response is shifted by 16 points,
to make it causal, the dela introduced through the filter is ot 16
sampling periods. However ' {w) is now adequate in amplitude but not
in phase. In the case of the flame such a delay cannot be countenanced.
This means that {fi} must have its significant part after time zero
and this in turn implies a limit to the coherence or the amount of
noise tolerable. How does the BRMA method fare when trying to model
H{w)? The bias leads to a false estimation. It is worse than in the
simulator with noise because there is nonper fect coherence throughout
the frequency range for the flame.

In the active control of flame noise time is at a premium. Calculation
time in the digital filter controller must be kept as low as possible.
This study shows that an impulse response method performs better than
least squares estimation under the same nonperfect coherence cond-
itions. The Xey to which method to use lies in the coherence between
the light and sound from the flame.
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