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1 INTRODUCTION

In this paper we present a numerical method for predicting the acoustic field around a

finite elastic structure immersed in an infinite acoustic medium. This has a number of

applications in underwater acoustics and aeronautics. In particular we are interested in

determining the radiated sound pattern from a simple sonar transducer.

In Section 2 we show how this can be achieved by coupling a boundary element analy-

sis of the exterior acoustic field to a finite element analysis of the structural displacements

by matching the appropriate boundary conditions. However, it is well known that the

classical integral equation formulation commonly used does not have a unique solution

for certain discrete frequencies [3,4,5,7]. Consequently, it is necessary to employ a modi-

fied formulation which ensures that the solution to the integral equation is unique for all

frequencies. Unfortunately, the modified formulation introduces certain computational

difficulties in the form of a hyper-singular operator, and we discuss a suitable method

for overcoming these computational problems.

Section 3 gives a brief description of the experimental procedure used to determine the

sound pressures around the transducer. In Section 4 we demonstrate that our numerical

method gives a} reasonably good estimate of the observed acoustic field.

2 NUMERICAL METHODS

Let S denote the closed surface of a structure immersed in an infinite acoustic medium.

We denote the interior and the exterior of S by D- and D... respectively . Further, let

1; denote the unit normal to S directed into D4,. It is well known that small amplitude

acoustic waves with harmonic time dependence of the form 2"“, where w is the angular

frequency, obey the Helmholtz or reduced wave equation [5]

v24; + 19¢ = o (1)

where ¢(p) is the excess acoustic pressure at a point p in the fluid or on the surface. Here

Is is the acoustic wavenumber given by k = f where c is the speed of sound in the fluid.
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A physical requirement of the problem is that all radiated and scattered waves are
outgoing at infinity. This condition can be expressed mathematically as the Sommerfeld
radiation condition [3,4,5]

. 19¢ .[fig-g; { a,(2) — was} — o p (2)
uniformly in all directions g. If the normal velocity V of the surface is known, then the

normal derivative of the acoustic pressure is given by

3_¢anb) = -iwprV(p) (3)

where p, is the density of the fluid. Further, it can be shown that equation'(1) along
with boundary conditions (2) and (3) has a unique solution for all positive values of the
wavenumber 1:.

However, it is clear that it is not feasible to use a domain technique, such as finite
elements, because of the infinite domain of For this reason, most workers choose to
reformulate (1) as an integral equation over the structure surface S. This has the imme-
diate advantage of reducing the domain from the three-dimensional infinite region D+ to
the two-dimensional finite surface S , and that the radiation condition (2) is automatically
satisfied, see [3,4,5]. Here we have chosen to work with a direct integral equation using
Green’s second theorem. An alternative indirect formulation could have been obtained

using a layer potential appropach, see [4,5,7].

Using Green’s second theorem it is possible to show that

‘¢inc(p) P e D-

/s(¢(p)%(p. q) - GAP, 9)5n—¢(9))d5q = { C(P)¢(P) - 45;”:(12) p E S (4)
' ' ¢(P) - ¢inc(?) P E 17+

 
where _

e-kIP-ql

41rIP—ql. (5)
is the free-space Green’s function for Helmholtz equation and ¢gnc(p) is due to any inci-

dent wave which may be present. The function C(p) is calculated from the solid angle
subtendend by the structure surface at p. For a point on a smooth surface, that is a
point where the tangent plane to S is unique, it can be shown that C(p) =

We can write equation (4) {or p on a smooth portion of S in operator notation as

—;I+ Mk)¢ = lupin—d, - ¢inc (6)

Gk(p1 q) =
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where

(WP) = (commas, (7)
and

(Mme) = befits)“, (a)
are the single and double layer potential operators respectively.

It can be shown, however, that for a countable set of values of k, denoted Is, the
operators (—%I + Mk) and LI, are singular and so (6) does not have a. unique solution
[3]. This problem is only due to the integral equation formulation employed, and is not
associated with any physical efl’ect. Over the past twenty-five or so years a number of
methods have been proposed for overcoming this problem, see [2,9,10,11,12,14,15]. Here
we shall employ the method due to Burton and Miller

By differentiating (6) with respect to a,” the normal at p, we obtain

 

Nm = 61+ Mag + ‘93:” (9)
where

Mfao) = [Sang—Eds = 3%(Ltaxp) (10)

and a 8G,, aNice») = E/sa(4)fi(p.‘1)d3q= imam). (11)
Strictly speaking, the differentiation with respect to E), cannot be taken inside the integral
sign in (11) since the resulting kernel function would have a non-integrable singularity.
However, this may be done in practice provided the integral is interpreted in the sense
of a finite part integral

The Burton and Miller formulation consists of taking a linear combination of (6) and
(9) in the form

a¢inc

an )

 

(—%'I+ M + am = [Li + «(in mfg + (m + (12)
where a is a complex-valued coupling parameter. It can be shown that provided Im(a) >
0 then (12) will have a unique solution for all real I: Further, it can be shown that
the conditioning of (12), and hence the accuracy of a numerical discretisation of (12),
depends on the choice of a. Recent results have show that the almost optimal choice of
a for obtaining a well conditioned formulation is a = [1,8,7].

Equation (12) can be solved for qt numerically using a piecewise constant collocation
method. The surface S is divided up into n elements S)" j = 1, . . . ,n and we choose
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a point p,- e 5), usually the centroid, to be a collocation point. The unknown pressure
qt and the normal surface velocity V are now approximated by the piecewise constant

functions 45 ( ) ¢ )

n P = l': i i?
W) = 3:: mm) (13’

where
1 if p E S;

0 otherwise (14)
IMP) = {

and (b; a ¢(p1), ¢g m ¢(p2) and so on. Substituting (13) into (12) for each value of 12,-
yields the matrix equation

Ag = twp/BK + g (15)

Where 2 = [¢l) ¢2i - - - ) ¢an) 1 = [Vii V29 - - - 1 anT and E = i¢inc(Pl)+a§%i:L(pl)y ‘ ' ' i¢iM(pn)+

nag-ftqu )]T, and the matrices A and B are given by the appropriate discretisation of the
integral operators.

Clearly we need to take care when evaluating the diagonal elements of A and B since

the Green’s function and its first derivatives have weak inverse distance singularitis.

However, the second derivative of the Green's function has a W singularity, and we
need some further analysis before we can evaluate it. Using a result due to Meyer et al

[10] we can write

 

81m _ 32m 2S anpanqa(q)d$9 _ [Sow —d(p))8npanqd5,,+d(p)k f5 Gk(p,q)np.nqd59. (16)

  

With our choice of basis functions, when p and q are in the same element the first integral

on the right hand side of (16) is zero whilst the second integal is only weakly singular
and can be evaluated by anappropriate quadrature rule.

We shall now consider the equations of motion of the elastic structure D_. The

finite element method is a well known technique for analysing the motion of an elastic

structure. Assuming harmonic time dependence of the form em and in the absence of

structural damping, the finite element equations for the strucural analysis can be written

as [17]

(K —w2M)g=fl*) +5“ (17)
where K and M are the stiffness and mass matrices; 1 is the vector ofnodal displacements

and fl") and [m are consistent load vectors due to known applied forces and fluid-

structure interaction forces respectively.

It can be shown that the interaction forces are related to the acoustic pressure through

1"" = —Li (Is)
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where L is a coupling matrix, details of which are given in Wilton [16] or Harris Thus
we can write

2 '= (K - w’M)"(.t“‘) - 1392)- (19)
Further, the normal particle velocity K at the fluid nodes is related to g through

1 = —iwL’1 (20)

where the elements of L’ are simply the components of the outward normal at the fluid

nodes [7,16]. Substituting (19) and (20) into (15) yields

(A + DLM = as” + s (21)

where D = wzp/BL’(K — wQM)'l . Once the pressure is known on the surface, we can
use (19) and (20) to find the surface velocity, and use (4) with p E D+ to find the acoustic
pressure at any point in the exterior fluid.

For a piezoelectric sonar transducer, the consistant load vector is of the form

f” = A BTngV (22)

where B is the elastic strain-displacement matrix [17], and go is the stress due to the
piezoelectric effect. This is related to the electric field strength fl through [13]

10 = avg (23)

where e, is the tensor of piezoelectric parameters. For the simple ring transducers under

consideration here, go has only one non-zero component in the radial direction, which is

constant. Although the magnitude of go is not known, we can assume an arbitrary value

and use this to determine how the shape of the response function changes with frequency.

3 EXPERIMENTAL DETERMINATION OF THE

RESPONSE

In order to validate our numerical method for accurately predicting the frequencies at

which the maximum response in a sonar transducer occurs, we make a comparison be-
tween some computed and experimental results. The experimental results are for three

ring type transducers. These consist of a ring of ceramic material which is ractangular
in cross-section and which may be surrounded by a. ring of metal such as aluminium.

For the transducers considered here, the inner radius of the ring is 50.8 mm, the height

28mm and the thickness of the ceramic material is 6.35 mm. Transducer A does not
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- Number of Number of

Transducer
A 40 24

B 60 26

C 80 28

Table 1: The number of finite elements and boundary elements used to model each
transducer.

 

have an outer ring of metal, whilst transducers B and C have outer rings of aluminium

of thickness 1.5875 mm and 4.7625 mm respectively.

As an initial guess to the resonant frequency in water, we determine the resonant

frequency in air by performing a loop test on the transducer as follows. A known voltage
is applied to the transducer at different frequencies and the impedance of the transducer

is measured at each frequency. The frequency which minimises the impedance is the
resonant frequency of the transducer. The resonant frequency in air is now used as a
starting point for finding the resonant frequency in water.

Each transducer was immersed in water in a test tank which was approximately 2.3
metres wide by 5.25 metres long and 2 metres deep. The transducer was excited by a
unit alternating voltage applied across the electrodes at different frequencies, and the

acoustic pressure was measured one metre from the transducer. Clearly this situation
was not ideal since there was a strong possibility of reflections from the sides and the
bottom of the tank and, to a lesser extent, from the surface of the water, although sides
of the tank were covered in a material designed to minimise any reflections. To further
complicate the situation, the transducer had to be put in a bag of castor oil, since the
water would short circuit the terminals of the ceramic ring. Castor oil was used since

it has almost identical acoustic properties to water but is a poor conductor. We have
assumed that any effects from the bag, on the acoustic field, were negligible.

This set-up is likely to introduce a number of sources of experimental error into
the results that we obtain. To minimise the effect of these errors, the experiment was
repeated a number of times in different positions in the tank, and the results averaged.

 
4 Results and Conclusions

The numbers of quadratic axisymmetric finite elements and linear axisymmetric bound-
ary elements used to model each transducer are shown in Table 1.

To find the peak response the problem must be solved for a number of different
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Computed Natural Experimental Resonant

Transducer 'Frequency Frequency. in Air
A .

B
‘ C

 

Table 2: The appropriate natural frequency, in Hz, of the sonar transducers considered.

frequencies. However this is expensive since the boundary element matrices have to be

re-computed for each new frequency. We can obtain an initial guess for the'frequency
which gives the peak response by finding the natural frequency of the structure, in a
vacuum, which has an eigenvector, or mode shape, similar to the displacements which we
are inducing in the transducer, and hopefully the frequency giving the peak response is

close to this natural frequency. Table 2 gives the appropriate computed natural frequency
in vacuo (in hertz) for each type of transducer with the experimental resonant frequency in
air. There is close agreement between the computed and experimental natural frequency,

which gives us some confidence in our measuringinstruments. Since all three transducers

have a natural frequency at about 10 KHz, we shall study the'response in the frequency
range 5-15 KHz. We note that it is possible to use these high frequencies, and hence high

wavenumbers, since the dimensions of the transducers are relatively small. For example,

using the largest transducer, C, the maximum value of d =| p — q I is 0,12695m. For
f :15 KHz we have m =94247.78 and I: =62.8319, and hence the maximum value ofIce!
is 7.9766.

-The results presented here are for the absolute value of the acoustic pressure at one

metre from the transducer in both the radial and the axial directions. The numerical

results have beenscaled to give pressures of the same magnitude as the experimental

results. This is allowed since we have chosen the value of g, arbitrarily.

From our numerical results we were able to determine that the peak response for each

transducer lies in the range 7-8.5 KHz. Figures 1, 2 and 3 show the acoustic pressure

one metre in the radial direction from transdueucer A, B and C respectively over this

frequency range. It can be seen that there is a good agreement between the computed

results and the experimental results for transducers A and B. The results for transducer

C do not agree so well, but the measured pressure for transducer C is smaller than that

for A and B and so could be more susceptible to experimental error due to reflections and

other spurious acoustic waves in the tank. Similar results were obtained for the acoustic

pressure one meter from each transducer in the axial direction.

It is clear that this numerical technique can be used to predict the response patterns
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of sonar transducers. If accurate data is available on the piezoelectric properties of the

ceramic part, then it is feasible to extend the finite element method to obtain an accurate

model to predict the exact response [13].
On the experimental side, it would seem that we need to obtain more accurate results

when trying to measure smaller pressures. However, this would probably require the use

of a bigger test tank to reduce the interference from any echoes.
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