Proceedings of The Institute of Acoustics

TRANSDUCER TOLERANCE EFFECTS ON CONVENTIONAL AND MAXIMUM-LIKELIHOOD BEAMFORMERS
P.J. Mumford and A.D. Lawton

Plessey Marine, Wilkinthroop House, Templecombe, Somerset, England.

INTRODUCTION

A frequently occurring problem in sonar engineering is to assess the 1likely
degradation in performance suffered by a system when its various subcomponents
depart from theoretically ideal behaviour. At the 'wet' end of a sonar systen,
such departures may be due to finite electrical tolerances in the transducers,
or to constructional inaccuracies in the array geometry. Further along a
digital system, quantisation and sampling effects might be considered under the
same heading. The present paper is concerned only with the effects of phase
and amplitude errors in the hydrophones making up a passive array. For
conventional beamforming this problem has been treated by many authors (see,
eg, [1] and references therein) by modelling the errors as random variables and
examining the statistics (usually the mean) of the resulting random beam
pattern. The main aim of this paper is to extend the treatment to a narrowband
maximum-likelihood (ML) beamformer by considering the statistics of the
'direction function' (DF) (which, for both conventional and ML beamformers is
the output power as a function of steer angle) when the array is placed in a
specified sound field. By using the reciprocal of the DF in the ML case, the
tolerance effects can be analysed for both beamformers in terms of random
perturbations of a quadratic form, using results whose derivation is briefly
outlined in the Appendix. To provide a comparison between the tolerance
effects in the two cases, the more familiar case of the conventional beamformer
is discussed first, and a parallel treatment of the ML beamformer follows.

SOUND FIELD MODEL

Suppose that the array consists of N omnidirectional hydrophones in some
arbitrary configuration with the j'th element at position x.. Only azimuthal
variation in source direction, specified by the bearing atigle b, will be
considered. The incident sound field is assumed to be due to p far¥ield point
sources emitting narrowband complex gaussian signals at the same frequency; the
. 8ignal from the k'th source at bearing b is received with power level s, at
the array. Each transducer also receives a narrowband complex noise signal
at the same frequency and with power nj the noise signals at each hydrophone
and all the incident plane-wave signals are assumed mutually uncorrelated.
Suppose that a signal from direction b has the wave vector g(b) and define the
direction vector a(b) by

a(b) = (exp(ig(b).x ), ...,exp(ig;_(b).gl\l))tp

and also define a, = a(b )

If M is the matrix whose (i, j)'th element. is the covariance between the total
signals at the i'th and j'th hydrophones, then the general form of M which will
be considered is thus (using + to denote hermitian transpose):
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M = nI +§Sk§-k?—k 1)

where the sum is taken over the p sources. The basic beamforming operation
consists *in multiplying the signal from the j'th hydrophone by the complex
weight w. (where ¥* denotes complex conjugation) and summing the resulting N
signals. If 114 is the weighting vector with j'th component w,, the beamformer
output power is given by w Mw. Strictly speaking this is an xpectation over
the random signals, but a sufficiently long integration time (and stationary
sound field statistics) will be assumed for ﬂfMH to be taken as the observed
value.

TRANSDUCER ERROR MODEL

The - output of the j'th transducer is assumed subject to a proportional
amplitude error ea. and a phase error e,.. so that the transducer output signal
is the true (in-water) signal multiplingby a factor

T+e , +ie,, =1 +4d,
_ aj £3 J
The ea's and e_.'s are taken to be zero-mean random variables, all mutually
uncorrélated and With common variance q/2. The assumption of equal phase and
amplitude variances simplifies the algebra, but the results are not crucially
affected if instead the amplitude errors have a common variance var(e_) and the
phase errors a common variance var(e_); the size of the errors is still
expressed by the single parameter g = var(e_ ) + var(e_.). A further
simplifying assumption which will be made is that the e s and e_.'s are all
gaussian. - The assumption of independence of errors between different
transducers is realistic for the electrical errors considered here. 1In the
treatment of other kinds of error, for example hydrophone position errors, the
assumption will not generally be realistic and a more involved analysis is
necessary.

Note that the random errors may be regarded either as fixed for a particular
realisation of the array, in which case the statistical ensemble of DF's arises
from a corresponding ensemble of hardware realisations, or alternatively as
slowly time-varying quantities (compared to the integration time), when the DF
itself becomes randomly time-varying. '

THE CONVENTIONAL BEAMFORMER
Conventional beamforming is achieved by setting w = gﬂb) for a chosen look
direction b. (For simplicity, uniform amplitude shading will be assumed). The
DF is therefore

P (b) = a”(b)Ma(b)

The transducer errors have the effect of replacing the weight vector w by
(1 + D)w where D = diag(d1, cee ,dN). The perturbed DF is thus

P(b) = a*(b)(1 + D)*M(1 + D)a(b)
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From the results in the Appendix, the mean and variance of P(b) are given by

EP(b) = Po(b) + q.tr(M)

var P(b) = 2q§f(b)Mag(b) + q?tr(Mz) (2)

Considering first the expression for EP(b), we see that the mean DF is obtained
from the unperturbed DF by adding the constant term gq.tr(M), which from (1) is
gN times the total incident acoustic power. This term therefore plays the role
of an omnidirectional statistical 'background level'. As might Dbe expected,
this background level increases with the error parameter q. It is obvious that
the relative effect of the background term is least where P (b) is large, and
only begins to become important at bearings b where P (b) ~ q.tr(M). For
Po(b)<K g.tr(M) it is evident that the mean DF flattens out at a 1level
dependent on g, and is almost entirely unaffected by the shape of the
unperturbed DF.

Knowledge of the mean DF is useful only if the likely variation of individual
realisations about this mean can be estimated, and computation of var P(b)
serves this purpose. Again we have a sum of a directional and a nondirectional
term, but now both increase with the error parameter q. The variance
expression takes a particularly simple form in the case of a single source in
zero noisej thus we take p = 1and n = 0 in (1), giving M = s1§1g1+. 1t
is easy to verify that equations (2) then become

EP(b) = Po(b) + aNs,

var P(b) = 2qNs,P_(b) + (qNS1)2 ' (3)

The mean and variance are thus both expressed in terms of the unperturbed DF
P (b) and the constant background term gNs,. The behaviour of the variance
resembles that of the mean, with an omnidirectional term added to a multiple of
Po(b); near peaks in P (b) the variance is approximately proportional to P (b),
and when Po(b) is smali it flattens out toza constant value. The peak value of
P (b) occurs at b =Db, when P (b,) = N's,. The background level is thus in
: tgis case lower than the peak by g factor q)N (independently of the source
strength s.,), reflecting the fact that tolerance effects on the conventional
beamformer become less serious as the number of transducers is increased.

In this simple case, it is interesting to note that an alternative derivation
{(see [2]) of the formulae for mean and variance proceeds by noting that the
real and imaginary parts of the output signal are uncorrelated gaussian
variates; the array output power then follows a noncentral chi-square
distribution and the given formulae are immediate applications of its standard
properties. )
For a more general M given by (1) withn > 0 and p > 1, the mean and variance
of the DF can no longer both be expressed simply as sums and products of the
unperturbed DF and the background level. The form of equations (2) suggests a
principal axis transformation of the quadratic forms, which results in the
Proc.l.O.A. Vol 7 Part 4 (1985)
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expression of the DF as a sum of 'eigenvector beams', and this is done below
for the ML beamformer. Here it will only be noted that in the formula for
EP(b), if the discrete sources are sufficiently spaced in bearing and of high
enough S/N, the unperturbed DF around b, is approximately the same as if only
source J were present, but the gmnidirectional term 1is increased by
contributions from all the other sources, as their energy leaks in via the
degraded sidelobe response of the Dbeamformer. This does not lead to the
conclusion that tolerances of a fixed size have a more serious effect on
performance when many sources are present, since - in this case the unperturbed
DF will already be presenting a somewhat uninformative picture, with incomplete
resolution of all the sources.

Figure 1 shows the unperturbed DF for a 16-element 1line array with
half-wavelength spacing with sources of strength 20 dB, 9.5 dB and O dB at
bearings of =40, -34 and 30 degrees from broadside respectively, in unit noise.
If the amplitude and phase errors have standard deviations of 20% and 11.5
degrees respectively (q = 0.08), the background level turns out to be 21.5 dB.
The customary use of a dB scale makes the addition 'by eye' of the unperturbed
DF and the omnidirectional background 1level to give the mean particularly
convenient. The middle curve in Figure 2 shows the resulting mean DF, together
with bounds of plus and minus one standard deviation. It is clear that the DF
in the region of the two strong unresolved sources will be only slightly
degraded, with some variability affecting the sidelobe structure, but in other
directions the DF is highly variable, and the weak source is likely to be lost.

THE ML BEAMFORMER

The so-called ML beamforming algorithm (see, eg, [3]) derives from the
minimisation problem :

minimise w'Mw  subject to w'a(b) = 1,

ie, for a chosen look direction b, minimise the beamformer output power subject
to the constraint that the beamformer is 'transparent' (has unity gain) to
signals from that direction. The well-known solution to the problem, for
nonsingular M, is given by .

W = M_1a_(b)/ R,(B)

where Ro is the reciprocal of the beamformer output power (and therefore its
negative In dB) and is given by '

R (b) = 2" (b)M™ 'a(b)

Using the reciprocal output power enables the results of the Appendix to be
applied, but with the difference that since the beamformer computes its weight
vector in a data-adaptive fashion, the effect of the errors cannot be analysed
as for the conventional case simply by replacing w by (1 + D)w.  Instead we
note that what the adaptive beamformer does is to solve the problem

minimise w (1 + D)™M(1 + D)w subject to w'a(b) = 1
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since the constraint is assumed to be correctly implemented and the only errors
are in the perturbed version of the in-water covariance which the beamformer
'sees'. It follows that

R(B) = a*(B)((1 + D)™M(1 + D))~ 'alp)

at(b)(1 - DM (1 - D)*a(b) to 1st order in D.

The Appendix now applies (it can be checked that the replacement of D by -p*
makes no difference) and for the mean and variance of R(b) we have

ER(b) = Ro(b) + q.tr(M’1)

var R(b) = 2q, §+(b)M-25(b) + geru?) (4)

In the first of these equations, an 'omnidirectional background level' effect
occurs, exactly analogous to the conventional case, but the background term is
no longer simply a multiple of the total acoustic power. The eigenvector beam
decomposition of Ro takes the form

Ro(b) = ukfk(b)

with the sum taken over the N eigenva%ues of M"1 which in ascending size are
Ugy eeey Uy, and fk(b) = | §+(b)v | © where v, is the normalised eigenvector
corresponding to u, . The eigenveagor beams are thus normalised to a peak value
of N. Equations (5) can now be written

ukfk(b) + qE U

2 2 2 "
2q ukfk(b) + q E u (5)
with the sums taken over k from 1 to N. Comparison of these equations with the
single-source conventional beamformer results in (3) shows that the RHS's of

the above equations are the sums of such expressions for sources of strength

proportional to uk.

ER(Db)

var R(b)

- If we first consider the behaviour of ER(b) in the simplest case, obtained by
putting p =1 and n =1 in (1) (n cannot now be set to zero or R (b) will
become unbounded), then u, = 1/(Ns, + 1) and all the other eigenvalues®’ are 1.
In the look direction Roab ) = N/ENs1 + 1) =~ 1/s, for high enough S/N, and in
directions away from the look direction R (b) ~ N, giving a flat ‘'noise
ceiling' dropping to a null in the source direction, whose depth increases with
source strength. Ignoring the smallest eigenvalue, the background level is
q(N-1) ~ gN. The main difference from the conventional analysis is now
apparent, since the background level is fixed relative to the noise ceiling and
not the DF value (peak or null) in the source direction. Thus the behaviour of
ER(b) suggests that if the source is weak enough, the DF is not significantly
affected by the transducer errors; as the source is made stronger, a
'saturation' effect comes into play with the depth of the null limited at the
background level.
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A qualitative idea of what will happen in the case of several sources can be
gained by considering, as before, p sources (1 < p < N) whose direction vectors
are approximately orthogonal, so that the first p eigenvalues approximate to
the small value u, = 1/(Ns, +1) and the remaining N-p take the value 1. In the
expression for ER%D) the constant background term is thus approximately q(N-p),
showing that the presence of a greater number of sufficiently strong sources
lowers the background level so that the deep nulls are less severely limited.
This decrease in the background level becomes progressively less marked as more
sources are added since they soon fail to be even approximately orthogonal and
not all the p eigenvalues will be small.

For the same sound field as in Figures 1 and 2, Figure 3 shows the unperturbed
inverse DF R (b), with the ML beamformer successfully resolving the three
sources and correctly estimating their respective strengths. The background
level for the same errors (q = 0.08) is now found to be 0.2 dB and.the
resulting mean plus and minus one standard deviation appears in Figure y,
Nearly all the information regarding the relative strengths of the sources is
lost, with the two strong sources appearing at approximately the same strength
as the weakest. Moreover, the figure suggests that the beamformer will only
just be able to resolve these two strong sources.

When a further 12 sources, all of strength -6 dB, are added at 10 degree
intervals from -25 to 85 degrees, Figure 3 is replaced by Figure 5, and Figure
4 by Figure 6. Because of the new eigenvalue distribution caused by the extra
sources, with a larger proportion of small eigenvalues, the background level
drops to -4 dB, and as a result the DF does provide a slightly better
indication of where the strongest sources are. However, in this example the
extra sources have the effect of causing the &two strong sources in the
unperturbed DF to be already somewhat less well resolved, in the sense that the
peak between the two source nulls is lower, and so the lowered background level
does not yield any noticeable improvement.

Some simulation results corresponding to these two source distributions are
shown in Figures 7 and 8, which correspond to Figures 4 and 6 respectively;
four different realisations of the random errors with q = 0.08 give rise to the
four DF's in each case. These figures show that the statistical bounds shown
in Figures 4 and 6 do provide a useful estimate of how an individual
realisation is likely to behave. It is also interesting to note that as the
curves in Figures U and 6 succeed in just resolving the two strong sources, soO
do all four of the realisations.

SUMMARY

M analysis of transducer tolerance effects on a conventional beamformer, using
the useful concept of the 'statistical background level', has been outlined,
yielding results familiar to sonar engineers. By considering the reciprocal of
the array output power, an exactly analogous method has been applied to a ML
adaptive beamformer and some differences between the effects in the two cases
noted. In particular, the tolerances give rise to a limiting effect in the ML
direction function so that the strength of strong sources is underestimated.
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APPEND IX

This appendix briefly indicates the derivation of the formulae (2) and (4) for
mean and variance of the randomly perturbed quadratic form. In the same
notation as the main text, and assuming D is Zero-mean,

EP = a'Ma + Ea'D*Mpa

= P +:§:§.*r..m..a. where  Ed.d, =r,.
o] i 71371373 i3 ij
and the sum is taken over i and j from 1 to N. The added term is another
positive semidefinite quadratic form whose kernel is the elementwise or
Hadamard product of the covariance matrices of the sensor signals and the
complex errors respectively, and will simplify only if at least one of these
covariances takes a simple form. In the case considered in this paper, (r,.)
is just q times the identity and has the effect of picking out the diagomal
elements of M. Since a is assumed to be a direction vector all its elements
have unit modulus and the constant term is thus seen to be q.tr(M), yielding
the first half of equations (2) and, with M replaced by its inverse, the first
half of equations (4).

If the errors are correlated so that their covariance matrix is no longer
diagonal, then a simple generalisation of the formula for the mean is obtained
by performing a spectral decomposition of (r..) into a sum of dyadics; the
background term is then generally direction—depenéént.

; TBe variance of P is straightforwardly obtained by computing the expectation of
P”. The expressions encountered in the general case will not be given here; it
will just be pointed out that when the amplitude and phase errors have equal
covariance matrices, and all amplitude errors are uncorrelated with all phase
errors, then terms like Edid. disappear. The further assumption that the error
distributions are all gaussign enables the mean of Udth-order terms in the d's
to be written in terms of (ri.), whereas all 3rd-order terms vanish. The
result is J

* * * *
var P = 22 rilmijmklai ajak al + E Pilrkjmijmklai ajak al
where the sums are taken over i,j,k and 1 from 1 to N. It is now easy to check

that when (ri.) is q times the identity, we get the second half of equations
(2), with the“obvious modification for equations (U4).
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