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ABSTRACT
The acoustic stress tensor is derived and ita role In the
meagurement of sound scattered by sound is set forth. A general
theory of scund scattered by sound is obtained which is valid for

arbitrary configurations of the primary fields. This theory auto-

matically accounts for deviations from ldeal planarity of the
interacting waves, a feature lacking in previous work. These

deviations are shown to contribute nothing te far field scattering.
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I. INTRODUCTION

In the course of measuring the non-linear lnteraction of twe
acoustic waves a speclal problem arises in the event the microphone
is simultansously irradiated by both waves. It is then necessary
to account for the demodulation which occurs on the sensitive ele-
ment of the recelver. This can in principle be done by intégrating
the acoustic stress tensor over the active face of the transducer.
This.tansar is derived in Section II,

Recently the expression for the virtual source strength was
demonstrated to be valid for arbitrary configurations oq the pri-

(2}

mary wavea.(l) The original derivation tacitly assumed these

primary wavea to be plane. In spite of this advance thae early

theory of tha scattering of sound by seund which predicted no scat-

tering, has not until now been ﬁpdated to take Into account this
new development. This is done in Section II1 where a very simple
conjecture Is given of the fact that deviations from planarity of
the primary waves, such as are known to gccur in the Fresnel zone

of radiators, contribute nothing to the scattering process.

STRESS TENSORS

II.

Following the notation of Landau and Lifshitz, The Classical

Theory of Fiald(a) the square of the infinitesimal line element

ds? is related to i the metric of four dimensional space as

follows
‘ T T
- By dx™ dx (1).

d52 =

In the above relation the dxi are the coordinate differentials

and it is understoﬁd that one sums on repeated indexes I and k
from O to 3,

The equations of motion for any system in a vanishingly small

gravitational field are

(2)
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in which Tik stands for the energy momentum tensor density of the
system under consideration and , k means ordinary differentiation
with respect to the kth coordinate. Thus, choosing

K = (p e o) ol F w0tk (3)
the relation Eq. (2} yields the hydrodynamic equations of an In-
viscid fluid. To see that this {s so for non-relativistic maotien

in which the ordinary three dimensional fleow velocity v® 1s negli-

gible compared with ¢ the speed of light, we put ot = 3? and
c
u® = - 1. The Greek indices a take on the values 1, 2 or 3 corres-
2 3

ponding to the threa spatial coordinates xl, x° and x”., The time

coordinate is x° = et. The metric “gik-;;_;;;_;;;ence of a gravi-

tational field has the only non-vanishing components °g“3 = 638‘

and 9g°° = - 1. The fluid pressure is p, its density c/c2 El -
Inserting Eq. (3} into Eq. (2} and separating the equaticns

inte the a space components and o time component yields

53

e ?pe o) v v BtPat c[(c_zp +p) vm]‘O =0, (&)

and

[te 2%p + p) vF) gt clic™® ¢ )] = 0. (5)

In most cases p >> pfc2 thus Eq. {4} hecomes

apv®vd L, 2ov?® _ 0 (6)
axe ax® at

the familiar equation for conservation of momentum, while Eq. (5)

becomes
B
doy_, 30 _,, (7
It
ax

corresponding to mass conservation,
In a by now familiar way Eq. (6) and Eq. (7) may be combined

to yield Lighthill's equation
32 TuB

—_— (g)
ax°ax5 L’

2
<, Qe = -
in which r:B stands for Lighthlll's stress tensor given by

1:5 = pvavB + (p - r:u:z)ﬁ"'B , (9



and g 1l the speed of sound.

We will now obtaln yet another stress tensor, the acoustic
energy momentum complex of which the space-space components are
the flux of acoustic momantmn.(u) We begin by asking how much
power per unit volume w does a pressure p put into a simple source
density of strength q.. The answer is obvious

% = - pq. (10}
Then we ask what force per unit volume £% does a velocity v* cause
to act upon q which is assumed stationary. A simple momentum
balance done by Integrating the flux of momentum from Eq. (3} over
a closad surface surrounding q reveals that

£a- poqvu ; {11)
It is convenient to introduce ¢ the velocity potential which sat-

isfies the equations

vn = ¢'n ' (12)
p - po ] and . (13)
Dé¢=q. o aw

The two.equatlcms (10) and (11} can be written as one with
the help of fk, a four vector whose Space compenents are £% ana
whose time component is w/q, thus

= gqct'k (15)
A tensor t:k whose divergence yields the negative of the four

force density fk iz the desired acoustic complex. That iz we de-

sire ik

a‘)\

ax

k=-—f {16}

With the help of Eq. (14) and Eq. {15), we may write Eq. (16)

as follows
Wk
t:k.k = o {01 ¢)¢

k R
5P, [ °'L
L]

(17)
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It i{s now a simple matter to verify that the following tenseor
satisfies Eq. (17),
ik _ ik Ik .t
T, =07 ¢ 208" ¢ t_l] . (18)
In terms of the physical quantities, pmaém and velocity, the
space-space components of ti‘k are
2
1“8 = pov“va- 172 6“ (po vl - -L_f ). (19)
pc
)
the familiar flux of acoustic momentum dapsity,.
III. SOUND SCATTERED BY SOUND
In this section an attempt wlll be made to show why non-plane
waves do not scatter each other. In its present state the
demonstration which follows lacks the rigour I would prefer it to
have.
We start by investigating the properties of the d'Alembertian

of the product of the radius vector x° and the virtual source

strength q .

ooty

]

a .,8
[x q],l

[x“q]:: + [x’q’nl::

9% « [0 al - (20)

By expressing the Laplacian of q in terms of its time deriva-

tives and d‘zAlembertian, Eq. (m)zbecoms

- c <
Q=3 Q' +aql-3—(Dql (21)

In avaluating the asymptotic retarded integral solution for the
above acurce distribution, we may as usual ignore contributions
_from the &'Alembertian thus

al,, c I L1 qdtl,, (22)
IT dv =338 ~ av .

Now J 9dt is proportional to Py Ppsthe product of the sound pres-

sures of the two primary interacting waves. Furthermore in the

9
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absence of real sources which in the case in this de'.ulopmgnt.
T R I TR N | (23)
& quintity akin to the Lagrangian density.
Introducing Eq. (23} into the right hand side of Eq. (22) shows
the scattered wave to be preportional to

=20¢p, 0t 0
n I 1 2,4 v . {(2u)

a r
Since the function in ﬂ“.’ square brackets is well behaved
(containing no slngulm-ifias)-;a may makelthe following sequence of
approximationa to Eq.. (24)

. A
Inﬂ:‘((pl) (92’,i]t'

- r

ST | N
__I L™ (o)) 4, @v =

. I [,[I(p'l Pz’]t' dv = 0. (25)

This completes the demonstration. The approximations em-
ployad could not be invoked at the level of Eq. (22) becauge
of the complete generality of q. The validity of the procedure
harel employed Is supported by the fact that (pl)'1 (p,‘,)'l is
non-vanishing even when both primary waves are plane, vet the
original theory of sound scattered by sound predicted no scatter-

ing for this case.

Iv. AN APDLOGY AND A JUSTIFICATION

I munt apologize to my audience and readers for my cholce
of lnguage in which to cast some of this work, namely, the Four—
dimsnsional relativistic mntion. 1 asgure ydu this ia not an
affectation on my part but-stems from the close similarities in

the two branches of science, Acoustics and General Rslativity.(s)

Lot ma 1lluatrate by an exsmple.
" Lighthill's equition may be written in terms of the strain h

h-{“u (26)



6=
in which €% is the weak field particle displacement. Thus

_ -1 -2 a8
Ok = o~ e "L,a.8 (2mn

We see then that an arbirrary stress distribution t:ﬂ glves rise
to a retarded Strain distribution h. A simple calculation shows
that a plane h wave has an intensity equal to noco%z which is
evidently proportional to the square of the strain.

The field equations of General Relativitv can be written(a)

in terms of strains in an otherwise flat space, giving rise to a

three space with metric Yea

_ 167G
DTuﬂ T Cu Tag

(28)

Here G is the gravitational constant and L represents not onlv
stresses of the variety given in Eg. (3) but also thae stresses
engendered by the gravitational field itself. Thus in General
Relativity as in Acoustics, the flelds may serve as their owm
sources.

Finally the energy flux of a plane gravitational wave may be
expressed in terms of the fractional change in cross sectional
area of an element of surface normal to the wave vector. Thus if
dsﬂ refers to strained space and ds to flat space, the intensity

7
turns out te be( )

5 ]
SLes .‘“T‘"S_’ , (29)
GA s

in which A is the wavelength of the wave and < > stands for time

averaging.

n
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¥. THE SECOND OBDER WAVE EQUATION IN THE PRESENCE OF SOURCES

The properties of the acoustic stress 't:kful.untn the
derivation of & wave equation exact to eecond order and valid in
the presance of real scurces q.

Conbining Eqe. (15) and {16) yialds

‘ri]:" x -oaqt"' ’ (30)
which is equivalent to the two equatioms

LR A 3 U Y ¥
and

'&.‘d‘: .- t;:: + 0 g4, 32)

A second qIzergeunce yislds

APERARIEY XU G4
and
tA‘.’:.u - "A‘::,o + (poqo'o).n. (35)

Combining Eqs. (34) and (35) ylelds
‘A?:.B - TA‘::.G * (poq¢'a>,u - (poqolo) ,0° 036}

Referring to Eqs. (9) and (19) ve may now express Eighthilla

stress 'rL“B in terms of the acoustic stress tA“, thus
'1:1'3 - 'I:LB +{L+p- pelystt (37
in which l. stands for the Lagrangian density
L-t-v-llzpovz-Li, ' (38)
. !pocu

and T and V are the kinetic and potential energy densities,

respectively,

Next combining Eqs. (36) and (37) there reasults

af -1 F ] -
tl.u’s - VTA.O.D +(L+ P - pc ).ﬂ + (D°§¢ ).ﬂ

- 0,a9°%) . 9 .

1”7



Sov 7,°° 1s the scoustic energy datisity B EhAE i8

t“"’-n-r+v-zv+t.. (463
which fact combined with ths cperator rmlation
72' m'oﬂro s (‘ij

peraits Eq. (39) to be wrlf.l:n a8 follows

tl:g.a -« OL+p-pe) + 2T+ 2U+p- ptz).a'n &)

»
ot (6 ,a4*™ 4 - 004"
The Lagranglan deénsity fs In part darivable from a d'Alembertimm.

Since
L= 172 o te (43)
We ses, usivg Eq. (l4). that
1~ BIUIM 587) = 1/2 804 ()
The Lagrsgisn in Eq. (42) is elindnaced vsiag Bq. (44) leaiPnl oo
Ll - LT R C RTINS N (45
+ (@V+p- pcz).o‘o + (Duﬂ’u) e -(9,10'0}..,

o
+ <p,qn:° .
This result may be modified by ineluding pqd within the

d'Alembattian

% e Oltes ped + U2 o, (41) 4% 8 88 1

+(2V+p - pcl) - g -0 qo‘a} - ta8)
... [ »a ) o

Lighthill'e equation for arbitrary fluid wotion in the presadce

of sources snd cortect to second otrdst, i

-l 08
O°=""7 "Las (1)

o
tn vhich ;%8 | éan be obtatnad from Eq. (A6). . The dacalled
.

spplication of Eq. (47) to particular problens will be daleted
‘for a future peper. . )

m--ammmpnuﬁmn. 8. Office of Naval
Reséarth. h
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