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ABSTRACT

The mouth: stress tensor is derived and its role in the

measurement of sound scattered by sound is set Earth. A general.

theory of sound scattered by sound is obtained which is valid for

arbitrary configuration of the primary fields. This theorv auto-

matically accounts for deviations from ideal planaritv of the

interacting waves, a feature lacking in previous work. These

deviations are shown to contribute nothing to far field scattering.
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INTRODUCTION

In the course ofmeasuring the non-linear interaction of two

acoustic waves a special problem arises in the event the microphone

is simultaneously irradiated by both waves. It is then necessary

to account for the demodulation which occurs on the sensitive ele-

ment of the receiver. This can in principle be done by integrating

the acoustic stress tensor over the active face of the transducer.

This'teneor is derived in Section 11.

Recently the expression for the virtual source strength was

demonstrated to be valid for arbitraxy configurations o1 the pri-

(2)
mary waves.(1) The original derivation tacitly assumed these

primary waves to be plane. In spite of this advance the early  
theory of the scattering of sound by sound which predicted no scat-

   
   
   
   
  
   
  

    
 

tering, has not until now been updated to take into account this '

new developmeq't. This is done in Section Iii where a very simple

conjecture is given of the fact that deviations from planarity of

the primary waves. such as are known to ,occur in the Fresnel zone

of radiators. contribute nothing to the scattering process.

11. STRESS TENSDRS  
Following the notation of Landau and Lifshitz, The Classical

(3)
     

   
   

 

Theory of Field the square ofthe infinitesimal line element

dsz is related to gik the metric of four dimensional space as   

 

     
   
   

  

follows

(is2 = - gik dxi dxk (l) I

In the above relation the dxi are thecoordinate differentials

and it is understood that one sum on repeated indexes i and k

from o to 3.

The equations of motion for any system in a vanishingly small

   
    

gravitational field are

(2)
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in which le stands for the energy momentum tensor density of the

system under consideration and , k means ordinary differentiation

with respect to the kth coordinate. Thus, choosing

le= (n+5) u1 uk+°g1kp , (3)

the relation Eq.. (2) yields the hydrodynamic equations of an in—

viscid fluid. To see that this is so for non—relativistic motion

in which the ordinary three dimensional flow velocity V“ is negli-

a
gible compared with c the speed of light, we put uu = 1 and

C

u0 = — l. The Greek indices :1 take on the values 1, 2 or 3 corres-

ponding to the three spatial coordinates :61, x2 and 3:3. The time

coordinate is x° = ct. The metric “31k in the absence of a gravi—

tational field has the only non-vanishing components °gus = 6
us‘

and °g°° = - l. The fluid pressure is p, its density e/ez = o.

Inserting Eq. (3) into Eq. (2) and separating the equations

into the a space components and 0 time component yields

[(c'2 p 9 o) vcl vs] B + p a + c[(c_2p + 9) Va] 0 = 0, (u)
. .5

and

[(c_2p 9 9) v3] . c[(c-2p + 9)] o = o. (5)
Bn

!n most cases 9 >> p/c2 thus Eq. (‘0 becomes

aovuvB + 32 + Bxav‘I = o (6)

3x8 3xu at

  

the familiar equation for conservation of momentum, while Eq. (5)

 

becomes
83an . are = o, m

3x

corresponding to mass conservation.

In a by now familiar way Eq. (6) and Eq. (7) may be combined

to yield Lighthill's equation

 

2
2 a a8

c n o = - 1 (B)
o ax“ax5 L ,

in which 1:3 stands for Lighthill's stress tensor given by

1:5 = Dvflvs o (p - aczn‘” , (‘3)



 

and co in the speed of sound.

He will now obtain yet another stress tensor, the acoustic

onerg momentum complex of which the space-space components are

(u)
the flux of acoustic momentum. He begin by asking how much

paler per unit volume it does a pressure p put into asimple source

density of strength q.‘ The answer is obvious

v = - pq. (10)

Then we eel: what force pet- unit volume f“ does a Velocltv v“ cause

to act upon 4; which is assumed stationary. A simule momentum

balance done by integrating the flux of momentum from Eq. (3) over

a closed surface surrounding q reveals that

5" a - poqvu_ (11)

It is convenient to introduce o the velocity potential which sat-

isfies the equations

v“ = V“ , (12)

p = - no 9 and (13)

DO ' q - _ ’ (1h)

The two-equations (10) and (1].) can be writtenas one with

the help of f“, a four vector whoSe space components are in and

whose time component is u/g. thus

fk = - gqo'k (15)

A tensor lik Ilhoee divergence yields the negative of the four

force density 6“ isthe desired acoustic complex. That is we de—

sire ik

 

k=-f (15)

Hid! the help of Eq. (1“) and Eq. (15). we mav write Eq. (16)

as fella-e

1k _ .k
IA'k — 94D ¢)o

(17)
= 9° 0'“ 0::
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R in nu- a'sinp‘la matter to verify that the following tense:-

satisfies Eq. (17),

U::A = note" 0" - 1/2 as“ o" 0 l1 . (1a)
.

In tens of the physical quantities, page“ and velocity. the

space-space ouponents bf til: at.

2
I“ = povuva— 1/2 6‘” (no '2 - -P—2- ). (19)

o c
o o

the famine:- flux of segmth tum annuity.

III. SOUND SCATTERED BY SOUND

In this section an attempt will. be made to show why nan-plane

waves do not scatter 23¢ other. In it. present state the

demonstration which follows lacks the rigour I would prefer it to

have.

We start by investigating the prvpeniea of the d'Alanbel-tlan

of the product of the radius vector x“ and the virtual source

strength q -

nu‘q) = [xuql'i
.

_ a .8 u .o
- [x ql’a o [x qJ‘Il"a

2V2q 4» ’6‘“: q)" . (20)

By expressing the Laplaelan of q 1:: tan: of its time darin-

cives and d'zAlemhertinn, 1‘4. (20)zhecoma
.. C c

q = % UEx'q'u o q] - g [x' nqlfi (21)

 

In evaluating the asynptatlc reth Integral solution for the

above source distribution. we may as usual ignore centrihutlons

I from the d'AlnIhu'thn thus

«1‘. c I aft! «11‘. (22)
[T W = in. , dv .

 

New I m is Michal to pl myths yroduct of the sound pres-

ume af thc two primary interacting waves. Furthermore in the

9
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ohm of all. sources which in the use in this development.

£- uol p,» uni)" (p,)_1 , (2:)
e quantity akin tothe Wan density.

Inuvdllzlu liq. (23) into the right hand side of Eq. (22) share

the scattered wave to be Wm). to

o iI: [(p1)' (p?) 11'.

r dv . (2'!)

Since the faction in the Isquana brackets is well behaved

(containing no singularities) we may make the following sequence of

maxim-dons to F4. (251)
. .1 ’I nalnfipl) (p21 11‘.
.——I—dv:

_ r

_ uplr" (pg-lat. a. =

, [[1:1th 171,)1‘I dv = o. (25)

This eonphtes the demonstration. The approximations em—

ployed mid not be invoked at the Level of Eq. (22) because

of the complete generality of q. The validity of the procedure

hen. employed is supported by the factthat (pli'1 (p2)’1 is

non-vanishing ma when both primary vans are plans, yet the

original theory of sound scattered by sound [mediated no scatter-

ing for this case.

IV. All mm AND A JUSTIFICATION

1 mt apologise to my audioneeand readers for my choice

of in which to cast one of this work. namely. the fan-

dimnnsional reintivisti: notation. I assure you this is not an

effectatiun on I] put hut‘ntene from the close similarities in

the two branches of Intense. lunatic: and General. Relativity.(s)

la: la illustrate by an example. I

I Lightnin'n equition any be written in ten: of the strain h

1. u g“, (26)
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in which E“ is the weak field particle displacement. Thus

_ -i -2 AB
Dh— DO a IL,°'B (21)

We see then that an arbitrary stress distribution (:8 gives rise

to a retarded “Pain distribution h. A simple calculation shows

that a plane h vave has an intensity equal to nasofizz which is

evidently proportional to the square of the strain.

The field equations of General Relativitv can be written“)

in terms of strains in an otherwise flat space. giving rise to a

three space with metric y“

_ lerG
mus - ' Cu 1&3 (23)

 

Here G is the gravitatianal constant and was represents not onlv

stresses of the variety given in E . (3) but also the stresses

engendered by the gravitational field itself. Thus in General

Relativity as in Acoustics. the fields may serve as their ovn

SDUX‘CES.

Finally the energy flux of a plane gravitational wave may be

expressed_ in terms of the fractional change in cross sectional

area of an element of surface normal to the wave vector. Thus if

clsfl refers to strained space and ds to flat space. the intensity

turns out to be”)

5 <d d a_ 1—: 5 ‘ 5 ’ (29).u “2 d5

 

in which i is the wavelength of the wave and< > stands for time

averaging .

'I‘I
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3. MSWMHAVS mummmmmsncaorsm

'lh- pmanlu of the nun-tic um- i’ikfudutua the:

inflation of i in. equation nut to second order and valid in

the nuance of real unru- q.

Wining Ian. (15) and (16) yield-

1I: k Iaoqo' .

which LI aquvnlent to u:- m aqmttm

Mi . an . 3'11's - who + néqo’

in oo o
a... ' ' ‘Am + nqu' .

A seem Maya-1d:

as an a
‘A,u.fl I "Anna + (now. ),u

and

- -1 4' (no-Io”)
‘ on

Man Ann: ,9.

Cambium; B45. (36) and (35') ylalda

«B
'A,u.6 - his”, + (Doq.’o),u - (poq.'°),a'

Baton-135 to Eqs. (9) and (19) we may m upm- ushthilu

LB. thus
Elma {Lug

71:“ - 1:“ + ( I. + p - “and!

in whlch 1. stands for the Lagrangian density

2
L-r-v-llzpDJ—L,

Zpocoz

and I an! V are the Hustle and potential. energy amines,

mpecttvaly .

Next combining Bqu. (36) and (3'!) than results

as no
‘L,a,8 - 'A.o.o

-»(n°qo’°)_°.

12

in tune of tha um“: um. I

:i- ( l. + p - 9:2); 4’ 001...)”

(30)

' (31)

(32)

(34)

(35)

(36)

(31)

(38)

(39)



 

mv"nmmucmmmiwnmu
u

A

tf"-s-r#v~1v¢t..
(35)

thick hat cabin-d with th- out-tor ninth:

71- El'nno .' (“3

par-1:: lq. (39) to be mun u foun-

ufl 1 z

‘L.u.a ' Em” P ' Dc 3 + (1' * 1!- + p - a: )J'. (b1)

.5

‘ + (n,qo'°)', - (you )_,.

m Ian-din: diniity 1;- (n' pin ainnbu' Era-"a runabout-n.

3h:-

I- - 11: 9'00".“ ' “3)

‘k “M “*9! a" ‘1'”- “"9

‘1- - Bu"! '93.“) - 1/2 4330- (m

m harm“: in 84. (L1) 1. autou um; la. (La) c‘u

11:13 - an. + p - a" + 1/: 9° (92).”! as)

4» m + p - “5””, q ooqo'°)_, -(n.10'°).,

4» (0.10:: .

This malt I11 be Mind by including no “thin th.

I'm-rum

68thus I all- + v : at: 4* 1/1 no (01)...“ 9» oofli

+ (W + p - nc’) - (9 $0) - (a go") . (he)
mm o ,u o .e

manna «mum to: “hunt! fluid hum in tho pmmca

of mm ml com! In second otdli. u

1 as
a” ' c z ‘L.u.s n

(L7)

'5; ma. 11:5.“ a: h mun-a m- u. (as). i The mum

mug-um a! In. (51) to pulled” [Kahlu- 11.11 b. “I‘M

for I {am pup-r. I

m-nummndfimn. 5- Offlcooflavul

Ream \

fl   
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