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1. Introduction

This paper is concerned with the detection of.(and extraction of

information from) Gaussian signals observed in a background of Gaussian

noise. If detection is to be possible at all, there must be significant

differences between the statistical properties of signal and noise about

which the designer is knowledgeable. In the typical passive sonar problenr-

our primary interest here—-the signal originates from a spatially concen-

trated source and therefore generates a more or less coherent wavefront. The

noise often originates from many small, spatially scattered sources which do

not generate one coherent wavefront. The existence of a coherent wavefront,

which can be identified through the use of an array of sensors, therefore

establishes the presence of a signal and provides immediate information

concerning certain of its features (e.g. the direction from which it comes).

These elementary notions lead to the detector shown in Fig; 1a.

  



    

    

   
  
  
  
  
  
  

  
   

  
  
  
  
   

   
  

If the set of delays is adjusted properly (to match the incoming signal

wavefront), the signal components add coherently whereas the noise compon-

ents do not. As one adjusts the relative delays one obtains a pattern such

as that shown in Fig. lb. The location of the peak is readily calibrated

in terms of signal bearing.

The instrumentation of Fig. 1a has been used for many years and is now

"conventional detector". Its basic rationale is to usegenerally known as a

the coherence of the signal wavefront to generate maximum signal level at the

summation point P; This presumably enhances the signal to noise ratio at P

and therefore facilitates detection.

There are clearly other ways to attack the problem. Instead of using

signal coherence to increase the signal level one might use noise coherence

to cancel part of the noise. This is not always feasible. If the noise

is independent from sensor to sensor, noise cancellation is not possible

and the procedure of Fig. la appears to be optimal. 0n the other hand, if

the spatial noise coherence is strong (and different from that of the signal)

noise cancellation may welllead to greater improvement in signal to noise

ratio than signal enhancement.

From a practical point of view the main problem with this second approach

 

is that the designer rarely has very accurate information concerning the

     
   
   
    

  

 

  
 
   

spatial structure of the noise. The obvious response to this difficulty is

to gather information about actual environmental conditions while the system

is in operation and to adapt various system parameters to match the observed

conditions.

' Since environmental conditions are likely to be quite variable and

  unpredictable one is almost forced into such adaptive procedures if one hopes

to improve performance significantly beyond the level set by aconventional
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processor. However. the improvement is bought at a price: Increased

complexity. -The number of parameters to be adjusted in a fully adaptive

system for a large array could be very high indeed and there is a real

question whether the cost is commensurate with the potential improvement.

This is the theme of the present paper. We shall seek to distinguish

between features in signal and noise statistics which lend themselves to

adaptation and those which do not. For this purpose we are not so much

concerned with the properties of particular adaptive algorithms as with the

maximum improvement which could be achieved with any algorithm. Fortunately

it is not too difficult to set bounds on this maximum improvement: The ideal

adaptive system would ultimately converge to the optimum system designed under

full knowledge of signal and noise statistics. For our purposes we therefore

need only compare the performance of the conventional system with that of the

optimum system and identify signal and noise features which cause the differ-

ence between the two to be significant. In those cases where meaningful

improvements are possible we must then inquire whether the relevant signal

or noise features are readily identifiable, or whether their isolation re-

quires configurations of great inherent complexity.

2. Basic Theory

We are concerned with the detection of a Gaussian signal in Gaussian

noise. According to a well-known result in detection theory, the detector

which maximizes detection probability for a given falsealarm rate forms the

likelihood ratio

5 11(1) /s+N)L.R. (1)

P(x/N)

  



and compares it with a threshold. pol/3+1!) is the probability density of

the data vector 1 when signal (as well as noise) is present. p(1/N) is the

corresponding probability density in the absence of signal . Instead of

working with L-R- one can, of course, use any monotone function of LR. and

compare it with an appropriately modified threshold. Because of the exponen-

tial form of the Gaussian distribution log LR. immediately suggests itself

as the most convenient test statistic.

If P is the covariance matrix of the signal component of g and Q that

of the noise component

-1 -l
2 = log L.R. = 1*[Q - (HQ) 11

x is, in general, a complex data vector and the symbol ( )* denotes the

conjugate—transpose of the bracketed quantity.

Eq. (2) is quite general: 1 may beany convenient representation of the

data such as time samples, Fourier coefficents, or expansion coefficients

associated with any complete orthonormal set. Note that we must represent

the time function received at each of M sensors in this fashion. The

dimension of 1 is therefore M times the number of coefficients required to

represent each time function. This is likely to be a very large number and

the matrix inversions required by Eq. (2) are therefore extremely cumbersome.

However. with careful choice of the representation one can often circumvent

this difficulty. In particular, it is almost invariably true in passive sonar

problems that the observation time I is large compared with the correlation

times of signal and noise. Under these conditions it is easy to prove that

Fourier coefficients associated with different frequencies are uncorrelated

so that a representation in terms of Fourier coefficients leads to block  



 

diagonal covariance matrices P and Q. Then Eq. (2) reduces to the simpler

form

“ I: -1 -12°:14Hfi%) -mgk+%%)11 (9

1k is the vector of Fourier coefficients associated with frequency wk = 2nk/T.

Its dimension is M, the number of sensors. Qk is the covariance matrix of the

noise Fourier coefficients at frequency w , normalized so that Tr(Q ) - M.
k k

N is the noise spectrum at wk. Similarly P is the normalized covariance
k k

matrix of signal Fourier coefficient and Sk describes the signal spectrum.

The normalization has been introduced to separate spectral features of signal

and noise (described by Sk and Nk) from spatial features (characterized by

Pk and Qk).

If the number of sensors is at all large. the matrix inversions of Eq. (3)

still require elaborate computational procedures. Analytical results can be

obtained in two practically important cases

a) Sk/Nk << 1 (low signal to noise ratio at all frequencies).

In that case

(s r + M Q )‘1 = (N Q )‘1[1- s r (N Q)_1] (Io)
k k k k k k k k k k

Substituting (4) into (3):

. n S

neizxzoilr
k=1 Nk

Since P is non-negative definite it can be factored as follows

kqilxk (5)

h
Pk = BkBk (6)

  



 

B is an M x M matrix. Substituting (6) into (5)

 

k

n S
_k_ -1 -1

z z 2 Wk 319(qu 1!)
k=l Nk

n S n S M
k k 2

s;——w*w=):—:|w| (7)
k'1N2kk k=1N2 1:1 1‘1

k Is.

Here the vector 315 defined as

w = 3*0'1 (8)—k k k 1k

wki, its 1th component. is a linear combination of the data associated with

frequency wk. Consider now one component of the '1 sum in the last version

of Eq. (7).

n S a

:1: I: _k_2|wi1|2=%I| 5” V10») zdu (9)
k=1 Nk a ' _,, “(01)

To reach the integral form of this equation we have seemed that the signal and

noise spectra vary slowly over intervals of the order 21r/T. We can now use

Paraeval's theorem to replace the frequency integral by an equivalent time

integral am! the optimal metrgnentmon thjrgfiote ums‘the form shown in

Fig. 2 '

  



   

  

  

   

  

  
   

The frequency sensitive filters H1104!) are specified by

H (w ) = M Q“) (10)
15 k (-ki k j

th
where gki is the i colunmof Bk.

Note that the complete instrumentation of Fig. 2 has M channels

(zl...zn) whose outputs are added. The final smoothing integration is the

same for each and can be made common. There are H identical filters

WINCH which compensate for spectral differences of signal and noise.

To adapt for such differences is therefore a relatively simple matter. On

the other hand there are H2 filters Hij (Lu) whose purpose is to use spatial

properties of signal and noise in optimal fashion. Unless M is very small,

full spatial adaptation will therefore be an extremely complex task.

b. Coherent signal wavefront

The second important case in which useful analytical results can be

obtained is that of a point source signal, which generates a planar wavefront

 



 

   

  if it is in the far field. a spherical wavefront if it is in the near field.

In either case the signal waveshapes received at different sensors are

identical except for a delay. Pk is then simply an outer product of a vector

with itself.

*
Pk = V1 V1 (11)

the "steering vector" !k has elements

(vk)1 a ejwkTi _ (12)

11 is the travel time of the signal from the source to the ith sensor.

Substituting (11) into (3) we can now use the standard matrix identity

_1 _1 Q'l_V_V.*Q'1
(Q + 2*!) = Q - "—T' (13)

1 + 1n; 1v

A few lines of algebra yield

2
n S [N

k k - -1z = kfl (1:01.139 (2:01. 1k) (14>
1 + K 3ka -k

The similarity with Eq. (7) is striking. The principal difference is that

the M x M3555;! Bk is replaced by the M ggggg; 3k. As a result theoptimal

instrumentation has only one of the H channels appearing in Fig. 2. The

appropriate block diagram is shown in Fig. 3. The implications for adaptive

processing are of obvious importance. When the signal wavefront is coherent.

spatial adaptation requires the control of only M rather than H2 filters. For

moderate M full adaptation is now at least a realistic possibility. In

practice, of course, signals are never generated by perfect point sources.

What is lost by working withFig. 3 rather than Fig. 27 Straightforward but



    
   

Spatial Filter '

tedious calculation show‘ that the sacrifice is small as long as the angle

subtended by the source at the receiver is much smaller than a receiver beam-

width. This is very generally the case in practical sonar problems. Hence

there is little incentive to go to a structure more complex than Fig. 3 as the

starting point for adaptive procedures.

We note in passing that the spectral filter in Fig. 3 contains the spatial

noise matrix Q. At low signalto noise ratios its effect is clearly small,

but athigh signal to noise ratios the spatial and spectral filtering operations

are no longer uncoupled, with obvious negative implications for the complexity

of the best adaptive processor.

We also note that Fig. 3 is optimal for detection. Suppose one is

interested in maximizing signal to noise ratio or obtaining the best possible

replica of the signal at a point such as A (perhaps in order to facilitate

1Bangs, w.3. Array Processing with Generalized Beamformers. Ph.D.
dissertation, Yale University, 1971.
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extraction of information from the signal). One finds:l that the resulting

structure is identical with Fig. 3 up to point B. Precisely the same

spatial filtering operation needs to be performed, only the spectral filter

changes somewhat. It is apparent, therefore that the spatial adaptation

process is basically the same, regardless whether the ultimate objective is

detection or the estimation of one or more signal parameters.

3 . Array Gain

To estimate the improvement in performance potentially available through

adaptation we must compare the performance of the conventional system with

that of the optimal system. Since we are primarily concerned with the effect

of spatial processing we shall characterize performance by the "array gain",

the signal to noise ratio in an incremental frequency interval at point B

(or A) divided by the signal to noise ratio in a similar frequency interval

at the array input.

Let flank) be the vector of filter gains at frequency wk, Then the

amplitude of the kCh frequency component at point B is §*(wk)xk. Therefore

the ratio of signal power to noise power at point B is

 

yepxflyfi‘)‘ rank) sum) ytwkmkmmk)
‘5’“)0 W I E Hank) !*(mk)Q(uk)fl(wk) (15)

The superscripts (a) and (n) denote signal and noise components respectively

and the overbar represents a statistical average. Dividing (15) by the input

signal to noise ratio one obtains the array gain

 

lfidelblute, D.J., Fisk, J.M. and Kinnison, G.L. Criteria for Optimum Signal
Detection Theory for Arrays, JASA lo_1, 199. Jan. 1967.
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summon»)
‘3‘”) ‘ woman-J)

The vector of filter functions fl is completely general.

11

We are mainly

(16)

interested in the conventional processor of Fig. 1 and the optimal processor.

In the conventional case L: is simply a set of delay operators which align the

signal components, i.e. g is the !_vector defined by Eq. (12). Then

(suppressing the frequency variable w)

1*v_v*v M2

 

1% 2w!

 

G
conv

0n the other hand the optimal processor uses

a = Q'lv

and the array gain becomes

!*Q-lfl*Q_1!
G = ——_———————— =

°"‘ xm'loo'lz
rad!

If the noise is spatially white (uncorrelated from sensor to sensor) Q = I

and

Gopt E Gconv a M

Thus the primitive conventional processor is optimal and no adaptation can

improve performance. In practice we frequently encounter situations where

(17)

(18)

(19)

(20)

major fractions of the noise power are spatially uncorrelated. An array gain

of M therefore serves as a useful benchmark. Adaptation is worth considering

if the conventional detector falls far below this performance level and/or

the optimal detector promises an array gain well in excess of M. In the

light of Eq. (19) the latter possibility arises primarily when the Q matrix

is near-singular.

s—
a

N.

  



 

   

  
Since noise coherence is the key feature distinguishing (17) from (19)

we begin with the extreme case: A noise containing a strong coherent compo-

nent (an interference). If the noise power is the same at each sensor the

normalized noise covariance is now

q a 1 + (1- )v v" (21)k E E —I—I

El is the steering vector of the interference and s is the fraction of the

total noise power which is spatially incoherent. Frequency dependences of c

and Xi have beensuppressed for simplicity of notation. By direct computation

from Eq. (17)

f
as + (1"E)I!’!Il2COIIV

 

(22)

M I2___i is the (normalized) interference power appearing in a beam steered on

the signal. It is proportional to M2 and (except for the isolated frequencies

for which a far field interference might lie in a null of the beam pattern)

can easily be the dominant term in the denominator of Eq. (22). Thus the

conventional array gain can be substantially smaller than M. The optimum

array gain is easily calculated from Eq. (19), using the matrix identity (13).

1-:

g; __;__ t 2G E[M H [XVII l (23)
°Pt 1+—E-H

If the interferences is at all strong

gig M >> 1 (2b)

and Eq. (23) becomes

1 1 2=gn-wrhll anGopt



 

If the interference is separated from the signal by more than a beamwidth

vnv 2 << M2 so thatI_ _II
~ M

Gopt E (26)

Thus one can achieve a performance almost equal to that attainable when the

interference is absent entirely. Substantial gains can therefore be made by

adapting to such a noise field. Nor is the required instrumentation terribly

complex. All one needs is a good replica of the interference and an estimate

of its location. which can he obtained by adapting one beam (for a far field

interference) or the outputs of a few widely scattered sensors (for a near

field interference). The estimate, properly delayed, can then be subtracted

from each sensor output to generate essentially interference—free data.

Adaptation is therefore particularly promising for combating strong noise

sources located near the observing platform.

The above argument is easily generalized to an environment containing

1

two coherent noise components

, 1;; * _l_-_€ *
Qk 51" 2 1111+ 2 1212 (27)

31 and 22 are the steering vectors of the two coherent noise components.

For simplicity their power is assumed to be equal. The equivalent of Eq. (23)

is now [for l:g M >> 1]
2a

1—: 2 l 2 2 1
—— * t k _ it * * * *

1 * 26H! 221 + WI! .‘Lll Izlle —V,,_ (21112222 + yzyzylzlml
c = —{M — v - ———————~———————— }
opt e M— —l 1_E 1

— _ — *

1 + 2.; (M M 1211)
(28)

q-V

  



   

   Eq. (28) furnishes several interesting insights:

(1) If [VIVZI is small (i.e. the two interfering sources are well separated

from each other)

~ 1 l— Em - iv - figtgz) (29)
Gopt M- -1

If both are well separated from the signal one can again approach the

performance of Eq. (26).

(2) If 11 = 22 (interferences nearly coincident)

l
Gopt a E” ‘ #321} I (30)

Thus the two nearby interferences act as one strong interference which can

be eliminated with ease.

(3) If the interferences are well separated from each other and from the

signal, an obvious procedure for eliminating them is to steer the array on

each interference with a separate set of delays and use the interference

replicas thus generated to cancel both interferences from each sensor output.

Alternatively one can, of course, combine all of these operations into an

instrumentation of the form of Fig. 3. The amplitude and phase characteristics

demanded of the filters H1(u) are now quite complex and vary rapidly with

frequency. The adaptive filter must therefore come quite close to the

optimum before satisfactory performance is achieved.

(4) Once can clearly extend the argument to more than two interferences.

In fact, one can View an arbitrary noise field as generated by a large number

of small, widely scattered point sources. If their number exceeds H one can,

of course, not cancel them perfectly and there will be a residual error.

1.1
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If no M of these sources contribute a significant fraction of the total noise

power the value of the entire cancellation process becomes questionable and

one suspects that the simple conventional processor may not be too fat from

the optimum. In the next section we shall examine this central issue from

a different and perhaps more intuitively appealing point of view.

4. Space Freguency Analysis

Here we confine our attention to far field signals and noises. To avoid

cumbersome trigonometric manipulations we assume that our receiving array is

linear. Suppose a sinusoidal signal of frequency no is incident at an

angle 9 on an array of length L, as suggested by Fig. 4. If the signal

Fla. 4-.

    

 

x-D

L—5_.L—L.J

received at the origin of coordinates is

so a Aejwot (31)

then the signal received at point x on thearray is

  



 

   

  Jw°(t+%sin6)s(x) = Ae

x
jw ~sine jv xE Co = s (32)Soe _ Soe

Here

m
0

vs c sine (33)

is the space frequency (wave number) of the signal. c is the velocity of

sound.

The important point in Eq. (32) is that, viewed as a function of x, the

signal is a sinusoid characterized by the frequency vs (whichspecifies the

direction of arrival). Suppose, for the moment, that the noise is spatially

white (uncorrelated from sensor to sensor). We are now dealing with a spatial

version of the classical detection problem: Detect a known wave-shape

(a sinusoid) in a background of white noise. The solution is well known:

Crosscorrelate the received noisy waveshape y(x) with a replica of the known

'signal. In our case the required test statistic is therefore

L L
2 2-jv x -jw gains

2 = I y(x)e 5 dx = I y(x)e 0c dx (3h)

- L L
2 '2

(x/c)sine is the time shift of the signal at point x on the receiving array

relative to that at the origin. Hence the operation specified by Eq. (34)

aligns the signal components at all points on the receiving array. It is

nothing more than a space-continuous version of the conventional detector

whose optimality in a white noise environment is therefore obvious from

elementary detection theory.

It is-useful to push the space-time analogy somewhat further. If the

noise is not white but the observation interval is large compared with the

14
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noise correlation interval, elementary detection theory tells us that the best

processor prewhitens the noise and then crosscorrelstes with an appropriately

modified replica of the signal. Figure 5 gives the spatial version of this

procedure. N(v) is the spatial noise spectrum. We may think of it as being

   

 

\

multiplicr

Fig. 5.

generated by a large number of infinitesimalplsne wave contributions coming

from all possible directions. Figure 6 gives a typical pattern for a far

field noise concentrated in s direction to the left of broadside. male is the
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space frequency associated with plane waves incident from the endfire

direction and is therefore an absolute bound on space frequencies which can

be associated with a far field noise source.

If the noise spectrum N(v) happens to have the shape of Fig. 6 and the

signal is located as suggested in that figure, we can draw an interesting

conclusion. The integrator in Fig. 5 is a spatial low pass filter of band-

width Zn/L. Since s is a pure sinusoid of frequency va it follows that only

those frequency components of y which lie within th/L of Va contribute

significantly to the output 2. If the noise spectrum is essentially flat

over this band (as suggested by Fig. 6) the prewhitening operation becomes

unnecessary. One can therefore conclude:

If the array length is large compared with the noise correlation distance

and if the noise spectrum is essentially flat over (va - Zn/L, vs + 2w/L)

the conventional detector is nearly optimal.

The first of these conditions rules out major components of the noise

field concentrated in a space frequency interval much smaller than a beam~

width and therefore confirms our previous observation that these will be

among the most logical features to be exploited by adaptive schemes.

fhe observation that far field signals and noises are simply spatial

sinusoids suggests that it may be profitable to work withspatial Fourier

coefficients to represent the received data. The received sound fieldis

characterized completely by the set of Fourier coefficients

L

on - I y(x)e dx (35)

L

2

Comparison with Eq. (36) shows that this is simply the output ofa conventional

1-1
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beamformer steered in the direction

c1 7‘0“
sinen = Zunfig E = -E‘ (36)

_X0 is the acoustic wavelength. By proper choice of the time frequency origin

one can always align the signal with one of these directions. [See Fig. 7].

Imerrenaz

           
-u'. -5 -4 -3 -z -1 not a a 4 s w; v'

Fig. 7.

In that case all of the signal is contained in one beamformer output (n = 2 in

our example). All of the other beams contain nothing but noise. They are

useful only to the extent that their outputs are correlated with the noise

on the signal beam. If a major fraction of the noise is concentrated in a small

spatial region (an interference) the appropriate beam output will be strongly

correlated with the noise on the signal beam and can therefore be used to

reduce it in an adaptive procedure.

If there is no strong, spatially concentrated component of the noise,

1-?

  



 

20

correlations with the noise on the signal beam will be weak and no single

noise beam can achieve much reduction of that noise. This does not imply

that major improvements might not be made through the use of many noise

beams. Consider, for example, a spatially isotropic noise [Fig. 8]. The

Non

No

0%. o wager:

Fig. 6.

K
I

correlation distance of such a noise is of the order of an acoustic wavelength.

If A0 << L and H >> 1 a basic theorem of functional analysis asserts that the

eigenvalues of the spatial noise covariance NQ follow the pattern of the

spatial spectrum N(v). In our example there will therefore be a certain number

(= L/Ao) of eigenvalues of magnitude near N0 and all of the remainder will

have magnitudes close to zero. The noise covariance matrix Q is therefore

almost singular and Eq. (19) suggests a very large potential for improvement.1

This appears to be in direct contradiction with our earlier assertion that the

1Tha phenomenon is often referred to as "superdirectivity" or "aupergain".

1-1

 



 

conventional detector is near-optimal for a noise field whose spatial spectrum

is essentially flat over an interval of tzfl/L, near the space-frequency of'

the signals. The dilemma is very real from a formal point of view, but not

from a practical one. In claiming near optimality of the conventional

detector we were working with local behavior, ignoring remote edge effects.

It is precisely these edge effects which the formally optimal detector seeks

to exploit. We have already observed that each beam provides little infor—

mation about the noise on the signal beam so that many such beams must be used

for any major improvement. We note from Eq. (36) that these beams no longer

correspond to real angles once n > L/Ao. In order to make frequencies above

wo/c accessible we must spatially sample above the spatial Nyquist rate of

AOIZ. Thus the number of sensors and the associated problem of adaptation

increases enormously. In terms of Fig. 3, we not only have a very large

number of filters 31(u) to adapt, but their phase and amplitude characteristics

must be controlled to a degree of precision which quickly becomes prohibitive.1

The situation is even.worse if one considers the locally generated (spatially

white) noise which is inevitably present at each sensor. Since the isotropic

noise component received at space frequencies above mole is Very small. it

is easily overwhelmed by the white noiseand the beam represented by this

space frequency is then virtually useless. From a practical point of view,

therefore, the assertion that the conventional detector is near-optimal

would be difficult to criticize.

The lesson to be learned for adaptive processing is that procedures

which seek to realize superdirective behavior are subject to very severe

 

1For a discussion of the resulting sensitivity problem see: Cox, 3., Sensitivity

Considerations in Adaptive Beamforming. NATO Advanced Study Institute on

Signal Processing, Loughborough 1972, p. 619.
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limitations. Adaptation comes into its own when the noise field exhibits

pronounced spatial features sufficiently concentrated so that they cannot

be resolved by conventional beams. It becomes particularly attractive when

the features are characterized by a small number of parameters (such as location

and strength of a few interferring sources). In other words, adaptation is

no substitute for a critical examination of the noise field in which one

expects to operate and a careful selection 0! key noisefield parameters about

which one needs to gather information. The object of the present paper has

been to provide some guidelines for this selection process.

  


