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OPPORTUNITIES AND LIMITATIONS OF
ADAPTIVE ARRAY PROCESSING

BY

PeTER M. SCHULTHEISS

YALE UNIVERSITY



1. Introduction

This paper is concerned with the detection of (and extraction of
information from) Gaussian signals observed in a background of Gaussian
noise. If detection is to be possible at all, there must be significant
differences between the statistical properties of signal and ncise abeout
which the designer is knowledgeable. In the typlcal passive somar problem—-
our primary interest here—-the signal originates from a spatlially concen-
trated source and therefore generates a more or less coherent wavefront. The
nolse often originates from many small, spatially scattered sources which do
not generate one coherent wavefront. The existence of a coherent wavefront,
which can be ideptified through the use ¢f an array of sensors, therefore
establishes the presence of a signal and provides immediate information
concerning certain of its features (e.g. the direction from which it comes).

These elementary notions lead to the detector shown in Fig. la.
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If the set of delays 18 adjusted properly (to match the incoming signal
wavefront), the signal components add coherently whereas the noise compon-
ents do nmot. As one adjusts the relative delays one obtains a pattern such
as that shown in Fig. 1b. The location of the peak fs readily calibrated
in terms of signal bearing.

The instrumentation of Fig. la has been used for many years and is now

"conventional detector". Its baaic rationale is to use

generally known as a
the coherence of the signal wavefront to generate maximum signal level at the
summation point P. This presumably enhances the signal to noise ratio at P
and therefore facilitates detection.

There are clearly other ways to attack the problem. Instead of using
signal coherence to increase the signal level one might use noise coherence
to cancel part of the noise. This is not always feasible. If the noise
is independent from sensor to sensor, noise cancellation is not possible
and the precedure of Fig. la appears to be optimal. On the other hand, if
the spatial nolse coherence is strong (and different from that of the signal)
noise cancellation may well lead to greater improvement in sfignal to noise
ratio than signal enhancement.

From a practical point of view the main problem with this second approach
is that the designer rarely has very accurate information concerning the
spatial atructure of the noise. The obvious response to this difficulty is
to gather information about actual enwvironmental conditions while the system
is in operation and to adapt various system parameters to match the observed
conditions.

" Since environmental conditions are likely to be quite variable and
unpredictable one is almost forced into such adaptive procedures if one hopes

to improve performance significantly beyond the level set by a conventional

1.1



processor. However, the improvement ié bought at a price: Increased
éomplexity. ‘The number of parameters to be adjusted in a fully adaptive
system for a large array could be very high indeed and there is a real
question whether the cost is commensurate with the potential improvement.
This is the theme of the present paper. We shall seek to distinguish

between features in signal and neoise statistics wﬁich lend themselves to
adaptation and those which do not. For this purpose we are not so much
concerned with the properties of particular adaptive algorithms as with the
maximum improvement which could be achleved with any algorithm. Fortunately
it is not too difficult to set bounds on this maximum improvement: The ideal
adaptive system would ultimately converge to the optimum system designed under
full knowledge of signal and nolse statistics. For our purposes we therefore
need only compare the performance of the conventional system with that of the
optimum system and ldentify signal and nolae features which cauée the differ~
ence between the two to be significant. In those cases where meaningful
improvements are pcssible we must then inquire whether the relevant signal

or noise features are readlly identifiable, or whether their isolation re-

quires configurations of great inherent complexity.

2, Basic Theo

We are concerned with the detection of a Gaussian signal in Gausslan
noise. According to a well-known result in detection theory, the detector
which maximizes detection probability for a given false alarm rate forms the

likelihood ratio

. PB(y)/s+)
L.R. )
P(I/N)



and compares it with a threshold. p(y/5+N) i8 the probability density of
the data vector ¥ when signal (as well as noise) is present, p(y/N) ia the
corresponding probability density in the absence of signal . Instead of
working with L.R. one can, of course, use any monotone function of L.R. and
compare it with an appropriately modified threshold. Because of the exponen-~
tial form of the Gaussian distribution log L.R. immediately suggests itself
as the most convenient test statistic.

If P is the covariance matrix of the signal component of ;?and ¢ that

of the noise component
-1 -1
z = log L.R. = xﬁ[q - (FHQ) "y (2)

y la, in general, a complex data vector and the symbel { }* denotes the
conjugate—-transpose of the bracketed quantity.

Eq. (2) is quite general: y may be any convenient representation of the
data such as time samples, Fourier coefficents, or expansion coefficients
associated with any complete orthonormal set. Note that we must represent
the time function received at each of M senscrs in this fashion. The
dimension of y 1a therefore M times the number of coefficients required to
represent each time function. Thia is likely te be a very large number and
the matrix inversions required by Eq. (2) are therefore extremely cumbersome.
However, with careful choice of the representation one can often circumvent
this difficulty. In particular, it is almost invafiably true in passive sonar
problems that the obaervation time T is large compared with the correlation
times of signal and noise. Under these conditions it 1s easy to prove that
Fourier coefficients assmoclated with different frequencies are uncorrelated

so that a representation in terms of Fourler coefficients leads to block
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diagonal covariance matrices P and Q. Then Eq. {2) reduces to the simpler

form
B -1
I AL - (5P, + MY 3

¥, 1s the vector of Fourler coefficients assoclated with frequency w, = 2rk/T.
Ite dimension 1s M, the number of sensors. Qk is the covariance matrix of the
nolse Fourier coefficients at frequency Wes normalized so that Tr{Qk) a M.
is the normalized covariance

N, is the noise spectrum at Wy Similarly P

k k
matrix of signal Fourier coefficient and Sk describes the signal spectrum.

The normelization has been introduced to separate spectral features of signal
and noise (described by Sk and Nk) from spatial features {(characterized by

Pk and Qk)'

If the number of sensors 1s at all large, the matrix inversioms of Eq. {3)

still require elaborate computational procedures. Analytical results can be

obtained in two practically important cases

a) Sk/Nk << 1 (low signal to noise ratio at all frequencies).

In that case

-1
(3 Pt Nka) (Nka) [I S (N Qk) 1 (4)
Substituting (4) into (3):
. n S
2= #q~'p qr1
k=1Nk2 b2 kk.zk (5)

Since P 18 non-negative definite it can be factored as follows

*
Pk = BkBk (6)



B, 1s an M x M matrix. Substituting (6) into (3)

k
n 8§
- k -1 -1
z= I =75 (g ) (BRY Yy
k=1 N
n n S M
k k 2
= oz Lutw = I = I |w] 7N
kel N2 TEE kel R T
Here the vector wyls defined as
= Bk -1 8
¥ = BRO (8)

L its ith component, is a linear combination of the data associated with

frequency u, . Consider now one component of the i sum in the last version

of Eq. (7).
n S
k Ys(w)
z, = L |w I w(u) (9
L e n? ‘i _l N(w)

To reach the integral form of this equation we have assumed that the signal and
nolse spectra vary slowly over intervals of the order 2v/T. We can now use

Parseval's theorem to replace the frequency integral by an equivalent time

Fig. 2
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The frequency sensitive filters Hij(m) are gpecified by
H, (0) = @FQD) (10)
13k (—ki k 73

where gki is the 1th columnof Bk'

Note that the complete instrumentation of Fig. 2 has M channels
(zl...zu) whose outputs are added. The final smoothing integration is the
same for each and can be made common. Thexe are M identical filters
YS(w) /N(w) which compensate for spectral differences of signal and noise.
To adapt for such differences 1a therefore a relatively simple matter. Om
the other hand there are M? filcers Hij(w) whose purpose is to use spatial
properties of signal and noise in optimal fashion. Unless M is very small,

full spatial adaptation will therefeore be an extremely complex task.

b. Coherent signal wavefrcnf

The second important case in which useful analytical results can be

obtained 1s that of a point source signal, which generates a planar wavefront

L
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if it is in the far field, a spherical wavefront if it 1a in the near field.
In either case the signal waveshapes received at different ‘sensors are
identical except for a delay. Pk is then simply an outer product of a vector

with itself.

*
Pk = ViVi {(11)
the "steering vector" !k has elements
= od®kT1
(Y, =e _ (12)
Ty is the travel time of the signal from the source to the 1th Sensor.
Substituting (11) into (3) we can now use the standard matrix identity
1 oy Qlwwerl
Q+¥*W) " =Q " - — - (13)
1+ Yy
A few lines of algebra yield
2
n 8, /8
k' "k - -1
= %*
sy (B9 T g ) a)
PR Sk

The similarity with Eq. (7) is striking. The principal difference is that
the M x M matrix B, is replaced by the M vector V.. As a result the optimal
instrumentation has only one of the M channels appearing in Fig. 2. The
appropriate block diagram is shown in Fig. 3. The implicdtions for adaptive
proceseing are of obvious importance. When the signal wavefront is coherent,
spatial adaptation requires the control of only M rather than M2 filiers. For
moderate M full adaptation is now at least a realistic possibility. In
pragtice, of course, signals are never generated by perfect point sources.

What 18 lost by working with Fig. 3 rather tharn Fig, 2?7 Straightforward but

11
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tedious calculation showlrthat the sacrifice is amall as long as the angle
subtended by the source at the receiver is much smaller than a receiver beam-
width. This is very generally the case in practical sonar problems. Hence
there is little incentive to go to a structure more complex than Fig. 3 as the
starting point for adaptive procedures.

We note in passing that the spectral filter in Fig. 3 contains the spatial
noise matrix Q. At low asignal Eo nolse ratios its effect is clearly small,
but at high sigﬁal to noise ratios the spatial and spectral filtering operations
are no longer uncoupled, with obvicus negative implications for the complexity‘
of the best adaptive processor.

We also note that Fig. 3 1is optimal for detection. Suppose one is
intereaﬁed in maximizing signal to noise ratio or obtaining the best possible

replica of the signal at a point such as A (perhaps im order to facilitate

lBanga, W.j. Array Processing with Generalized Beamformers. Ph.D.
dissertation, Yale University, 1971.
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extraction of information from the signal). One findsl that the resulting
s£ructure is identical with Fig. 3 up to point B. Precisely the same
spatial filtering operation needs to be performed, only the spectral filter
changes somewhat. It is apparent, therefere that the apatial adaptation
process 1s basically the same, regardless whether the ultimate objective is

detection or the estimation of one or more signal parameters.

3. Array Gain

To estimate the improvement in performance potentially available through
adaptation we must compare the performance of the conventional aystem with
that of the optimal system. Since we are primarily concerned with the effect
of spatial processing we shall characterize performance by the “array gain",
the signal to nolse ratio in an incremental frequency interval at point B
{or A) divided by the signal to noise ratic in a similar frequency interval
at the array input.

Let ﬁ(mk) be the vecter of filter gains at frequency Wy » Then the
amplitude of the 1R frequency component at point B 1is ﬂ?(mk)zk. Therefore

the ratlo of signal power to noise power at point B is

o B @)r )y B Sta) B R W) s
0 ) ¥ N(w ) H*(wy )Q(w, )H(u,)

The superscripts (s) and (n) denote signal and noise components respectively
and the overbar representa a statistical average. Dividing (15) by the inmput

signal to noise ratio one obtains the array gain

lEdelblute, D.J., Fisk, J.M. and Kinnison, G.L. Criteria for Optimum Signal
Detection Theory for Arrays, JASA 41, 199, Jan. 1967.
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The vector of filter functions H is completely general.

11

(16)

We are mainly

interested in the conventional processor of Fig. 1 and the optimal processor.

In the conventional case Eris simply a set of delay operators which align the

signal components, i1.e. E 1s the V vector d=fined by Eq. (12). Then

(suppressing the frequency variable )

VAR 2

Rliglti'4 KADUS

G
conv

On the other hand the optimal processor uses

and the array gain becomes

-1 -
v hwyxqly )
O ——— !*Q l!

G
A e

Qan

(18)

(19)

If the nolse 1s spatlally white (uncorrelated from sensor to gensor) Q@ = I

and

G =6 = M
opt conv

(20)

Thus the primitive conventional processor 1s optimal and no adaptation can

improve performance. In practice we frequently encounter situations where

major fractions of the nolse power are spatially uncorrelated. An array gain

of M therefore serves as a useful benchmark. Adaptation is worth considering

if the conventional detector falls far below thia performance level and/or

the optimal detector promises an array gain well in exceas of M. In the

1ight of Eq. (19) the latter possibility arises primarily when the Q matrix

is near-singular.
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Since noise coherence is the key feature distinguishing (17) from {19)
we begin with the extreme case: A noise containing a strong coherent compo-
nent (an interference). If the noise power is the same at each sensor the

normalized noise covariance 1s now
Q = el + (l-e)V. V" (21)
" EALAL]

!{ ie the steering vector of the interference and € 1s the fraction of the
total noise power which 1s spatially inccherent. Frequency dependences of ¢
and !I have been suppressed for simplicity of notation. By direct computation

from Eq. (17)

i’

® * 2 (22)
eM + (1-) |V, |

conv

|!f!1|2 is the (normalized) interference power appearing in a beam steered on
the signal. It is proportiomal to Mz and (except for the isolated frequencies
for which a far field interference might lie in a null of the beam pattern)
can easily be the dominant term in the denominator of Eq. {22). Thus the
conventional array gain can be substantially smaller than M. The optimum

array gain is easily calculated from Eq. {19), using the matrix identity (13).

1-¢
P T [ ke, 12 \
Gopt E[M 1+ l-e” IE-vII ] (23)
E

If the interferences 1s at all strong

lgs-u »» 1 _ (24)
and -Eq. (23) becomes
P IR | 2
Gopt - e[M HIX?!II ] (25)
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1f the interference is separated from the signal by more than a beamwidth

Igflllz << M? so that

G = (26)

opt

[y ltc4

Thus one can achieve a performance almost equal to that attainable when the
1nterfefence is absent entirely. Substantial gains can therefore be made by
adapting to such a noise field. Nor is the required instrumentation terribly
complex. All one needs is a good replica of the interference and an estimate
of its location, which can be obtained by adapting one beam (for a far field
interference) or the outputs of a few widely scattered sensors (for a near
field interference). The estimate, properly delayed, can then be subtracted
from each sensor output to generate essentially interference-free data.
Adaptation is therefore particularly promising for combating strong noise
gources located near the observing platform.

The above argument is easily generalized to an environment containing

J
two coherent noise components

TS TR EP
Q =l + 5 LV, + 57 LY (27)

v and V, are the steering vectors of the two coherent noise components.

For simplicity their power is assumed to be equal. The equivalent of Eq. (23)

1-¢
is now [fer e M >> 1]

1-¢ 2,1 2 2 1
— %’ * * - % % * *
1 . SEL|Av, |+ 4l VY [T vav, 7 - (Y VY + YoU3Y, VR Y
¢ =={M-"V - }
Opt € M- -l 1-¢ 1
) - = Yk
1+ 2g & M !2!1)
(28)

s':f ..-f
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Eq. (28) furnishes several interesting inaights:

(1) 1If IVIVZI is small (i.e. the two interfering sources are well separated

from each other)

= 1M - Zywy

1
M= M-~=

2} (29)

Copt

1f both are well separated from the signal one can again approach the

performance of Eg. (26).

(2) If_:.'_1 = !2 (interferences nearly coincident)

1
Gope = M - %v_*gl} | (30)

Thus the two nearby interferences act as one strong interference which can

be eliminated with ease.

(3) 1f the interferences are well separated from each other and from the
signal, an obvious procedure for eliminating them is to steer the array on
each interference with a separate set of delays and use the interference
teplicas thus generated to cancel both interferences from each sensor output.
Alternatively one can, of course, combine all of these operations into an
instrumentation of the form of Fig. 3, The amplitude and phase characteristics
demanded of the filters Hi(m) are now quite complex and vary rapidly with
frequency. The adaptive filter must therefore come quite close to the

optimum before satisfactory performance is achieved.

(4) Once can clearly extend the argument to more than two interferences.
In fact, one can view an arbitrary noise field as generated by a large number
of small, widely scattered point sources. If their number exceeds M one can,

of course, not cancel them perfectly and there will be a residual error.

1.1
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If no M of these sources contribute a significant fraction of the total noise
power the value of the entire cancellation process becomﬁs questionable and
one suspects that the simple conventional processor may not be too far from
the optimum. In the next section we shall examine this central ilssue from

a different and perhaps more intuitively appealing point of view.

4. Space Frequency Analysis

Here we confine our attention to far field signals and nolses. To avoid
cumbersome trigonometric manipulations we assuite that our receiving array is
linear. Suppose a sinuscidal signal of frequency Wy is incident at an

angle & on an array of length L, as suggested by Fig. 4, If the signal

N

FE;.“.

PO SN S o
received at the origin of coordinates is
5p = AeduOt (31)

then the signal received at point x on the array is
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jwo(:+‘l‘ame)
s8{x) = Ae ¢
X
jw —siné Jv x
. Oc - 8 (32)
Soe = Soe
Here
w
0 ‘
vy ” 8ind (33)

is the space frequency (wave number) of the aignal. c is the velocity of
sound.

The important point in Eq. (32) is that, viewed as a function of x, the
signal is a sinusoid characterized by the frequency Vg {which specifies the
direction of arrival). Suppose, for the moment, that the noise is spatially
white (uncorrelated from sensor to sensor). We are now dealing with a spatial
version of the classical detection problem: Detect a knowm wave-shape
(a sinusoid) in a background of white noise. The solution is well knowm:
Crosscorrelate the received noley waveshape y(x) with a replica of the known

'signal. In our case the required test statistic is therefore

(x/c)siné is the time shift of the signal at peint x on the receiving array

X1 [ )
we

X
-jwozaine

-jv x
y(x)e % dx-= f y(x)e dx (34)

L

(S]] ]

relacive to that at the origin. Hence the operation specified by Eq. {(34)
aligns the signal components at all points on the receiving array. It is
nothing more than a space-continuous version of the conventional detector
whose optimality in a white noilse envircnment is therefore obvious from
elementary detection theory.

It is useful to push the space-time analogy somewhat further. If the

noise 18 not white but the observation interval is large compared with the

11
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pnoise correlation interval, elementary detection theory tells us that the best
processor prewhitens the noise and then crosscorrelates with an appropriately
modified replica of the signal. Figure 5 gives the spatial version of this

procedure. N(v) 1s the spatial nolse spectrum. We may think of it as being

| ' =~ 5 |
Y VN (V) 2t jd”()

L
-2 z
multiplier
S o—— !
VN ) Fig. 5.

generated by a large number of infinitesimalplane wave contributions coming
from all possible directions. TFigure 6 gives a typical pattern for a far

field noise concentrated in a direction to the left of broadside. molc is the

N () S'tgna.L

- u:/c. | A W w,/c_- v
. v%-%;! Vit 2T
Fig. €.
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space frequency assoclated with plane waves incident from the endfire
direction and is therefore an absolute bound on space frequencies which can
be associated with a far field noise source.

If the noise spectrum N(y) happens to have the shape of Fig. 6 and the
signal is located as suggested in that figure, we can draw an interesting
concluasion. The lntegrator in Fig. 5 is a spatial low pasa filter of band-
width 2v/L. Since s 1s a pure sinusold of frequency Vg it follows that only
those frequency components of y which lie within #27/L of “s contribute
significantly to the output z, If the noise spectrum 1s essentially flat
over this band (as suggested by Fig. &) the prewhitening operation becomes
unnecessary. One can therefore conclude:

If the array length i1s large compared with the noise correlation distance
and if the nolse spectrum is essentially flat over (v5 - 2n/L, vg + 21/L)
the conventional detector is nearly optimal.

The firét of these conditions rules out major components of the noise
field concentrated in a space frequency interval much smaller than a beam~
width and therefore confirms our previous obaervation that these will be
among the moat logilcal features to be exploited by adaptive schemes.

fhe obaervation that far field signals and noises are simply spatial
sinusoids suggests that it may be profitable to work with spatial Fourier
coefficients to represent the received data. The received sound field is

characterized completely by the set of Fourier coefficients

L _om
e, = I y(x)e L oix {35)
L
2

Comparison with Eq. (34) shows that this is simply the output of a conventional

1.1
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beamformer steered in the direction

c 1 "
sinen = ZWHEE'E =1 (36)

-AO ié the acoustic wavelength. By proper choice of the time frequency origin

one can always align the signal with one of these directions. [See Fig. 7].

A Interference

k
[
i
|
|
]
1

M——— — ——
- ——
e ———
whle———

nzo

,.
S

B
<

Fig. 7.

In that case all of the signal is contained in cne beamformer output (n = 2 in
our example). All of the oﬁher beams contain nothing but noise. They are
useful only to the extent that their outputs are correlated with the noise

on the signal beam. If a major fraction of thg noise 1is conceﬁtrated in a aﬁall
spatial region (an interference) the appropriate beam output will be strongly
correlated with the noise on the signal beam and can therefore be used to
‘reduce it in an adaptive procedure.

If there is no strong, spatially concentrated component of the noise,

1-1
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correlations with the noise on the signal beam will be weak and no single
noise beam can achleve much reduction of that noise. This does not imply
that major improvements might not be made through the use of many noise

beams. Consider, for example, a spatially isotropic nolse [Fig. 8). The

N)

No

<

we o) we 2¥

Fig. a8,

correlation distance of such a nolse is of the order of an acoustic wavelength.
If AO << L, and M >> 1 a basic theorem of functional analysis asserts that the
eigenvalues of the spatial noise covariance N} follow the pattern of the
spatial spectrum N(v). In our example there will therefore be a certain number
(= L/Ao) of eigenvalues of magnitude near NO and all of the remaiﬁder will
have magnitudes close to zero. The noise covariance matrix Q i1s therefore

almost singular and Eq. (19) suggests a very large potential for 1mprovement.1

This appears to be in direct contradiction with our earlier asssertion that the

1Thé phenomenon 1s often referred to as "superdirectivity" or "supergain”.

11
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conventional detector is near-optimél for a nolse field whose spatial apectrum
ig essentially flat over an interval of £27/L. near the space-frequency of
the signals. The dilemma is very real from a formal point of view, but not
from a practical one. In claiming near optimality of the conventional
detector we were working with local behavior, ignoring remote edge effects.

It is precisely these edge effects vhich the formally cptimal detector seeks
to exploit. We have already observ;h that each beam provides little infor-
mation about the noise on the signal beam so that many such beams must be used
for any major improvement. We note from Eq. (36) that these beams no longer
correspond to real angles once n > L/AO. In order to make frequencles above
wofc accessible we must spatially sample above the spatial Nyquist rate of
1012. Thus the number of sensors and the assoclated problem of adaptation
{increases enormously. In terms of Fig. 3, we not only have a very large
number of filters Hi(m) to adapt, but their phase and ahplitude characteristice
must be controlled to a degree of precision which quickly becomes prohibitive.l
The situation 1s even worse if one considers the locally generated (spatially
white) noise which is inevitably present at each semsor. Since the isotropic
noise component received at space frequencies above wolc is very small, it

is easily overwhelmed by the white noise and the beam repfesented by this
space frequency is then virtually useless. From a practical point of view,
therefore, the assertion that the conventlonal detector is near-optimal

would be difficult to criticize.

The lesson to be learned for adaptive processing is that procedures

which seek to realize superdirective behavior are subject to very severe

lFor a diacussion of the resulting sensitivity problem see: Cox, H., Sensitivity
Considerations in Adaptive Beamforming. NATO Advanced Study Institute on
Signal Processing, Loughborough 1972, p. 619.
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limications. Adaptation comes into its own when the nolse field exhibits
pfonounced spatial features sufficiently concentrated so that they cannot

be resolved by conventional beams. It becomes particularly attractive when

the features are characterized by a small number of parameters (such as location
and strength of a few interferring sources). In other words, adaptation is

no substitute for a critical examination of the noise field in which one

expects to operate and a careful selection of key noise field parameters about
which one needs to gather information. The object of the present paper has

been to provide some guidelines for this selection process.

1.1



