
  

- 19 _

PARTIAL SPHERE TRANSDUCERS

P R BRAZIER-SMITH

PLESSEY MARINE - TEMPLECOMBE

The clectroaconstic performance of partial sphere transducers has been
examined experimentally and a theory postulated for their design. The
theory for the ceramic/support interaction has been applied to specific
design configurations of partial sphere transducers and checked against
practical measurements. The results indicate that practical partial
Sphere transducers are feasible, and that the ceramic/support inter—
action theory is valid.

Since the initial study, further theoretical work has been carried out
on the prediction of certain parameters of partial sphere transducers.

Using the theory of Kalnins (1964), a method has been developed to
deduce the modes of an axisymmetric partial spherical shell given the
static stiffness of the shell support. The mode shapes and frequencies
are calculated for an 'in vacuo' state. The effect of water loading
on the shell is then examined= and the change of resonant frequency,
the power emitted and the beam patterns are calculated. These tech-
niques exist as computer software and have been validated against an
experimental transducer.

The theoretical performance of a particular partial spherical shell
transducer is assessed using a suite of five computer programs. These
calculate the modal frequencies and mode shapes in vacuo, the total
radiated power and modal amplitudes in water for a range of frequencies,
and the beam pattern in the form of the far field pressure distribution
for any selected frequency.

The input data required for the suite comprises detail of the spherical
shell geometry. the static stiffness of the supports, and the frequencyrange over which the analysis is required.

The static support stiffnesses are obtained using the finite element
analysis (PAFEC suite of programs). The ceramic support is modelled
as a series of elemental shapes, and the program suite calculates the
displacements of the support for a given set of input forces. These
are separated into the horizontal and vertical stiffnesses and the
bending stiffness of the support structures.
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Introduction

The vibration of spherical shells has been studied by a number of authors.
Notably, Kalnin's (1964) described how the axisymmetric modes of a partial
spherical cap may be determined for a range of simple boundary conditions.
Sonstegard (1969) and more recently Lou and Su (1978) consider the effect of
fluid on axisy'mmetric vibrations of a complete spherical shell.

The present work extends the work of Kalnins to incorporate more complex bound-
ary conditions of a compliant munting attached to the edge of the shell. Also
the effect of fluid loading is considered on the basis that the shell. was mounted
in a matching spherical baffle.

Freguencies and Shapes of Modes in Vacuo

Consider the'shell geometry as illustrated in l’igure l.

R is the shell radius, 11 is the shell thickness, la is the semicap angle
and fl is a general angle. 1! R an I) represent displacements of the shell in
normal and tangential direction, then for periodic nation, these can be written
in terms of amplitudes:
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(note: the 'hats' shall indicate amplitudes throughout).

From Kalnins (1964), mode shapes conform to the following:
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Where P...“ and P4“ are respectively the Legendre and associated Legendre functions
of order zero and degree ’n‘snd:
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La.) is the angular eigen frequency, 2, p and? are respectively Young‘s
modulus, density and Poisson's ratio. A‘ are chosen so that the specified
boundary conditions are satisfied.

 



  

-21-

The dimensionless numbers >\d\sre the solutions of the cubic:
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In addition to the above, the membrane stress resultant, N, the moment

resultant , M, and transverse shear resultant are given by Kalnins as
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(Note: Legendre functions appear with argument cos ¢ assumed)

If the components of the stiffness matrix of the support, referred to
directions 2 and t of Figure 1, are Knn, Ru and Kn: Csymtric with Km):
and K is the restoring moment per unit angular displacement, then the boundary
conditions that stresses and moments are continuous across the boundary, yield
the matrix equation in Aj:

iglsgs =0 ,,,, .m
m

where:
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Meaningful solutions of (7 )only exist when the determinant of S changes sign.
Hence the trades of the spherical shell in are can Be determined By stepping
by small intervals over the desired range.

The Effect of Water Losdin

 

It can be shown that the equation of motion of a spherical shell set in a
matching sperical baffle can be written terms of the amplitudes,&hof its in
vacuo modes:

AA "" / h A3-t_ 1. _ _: _ TI- 0, P w-L J"(my to" mL (P ) $5 .a
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,n
95 is the radiated pressure field due to exciting the jch mode with unit

amplitude. Integration is carried out over S, surface area of the shell.

 



    

f1 pis a generalised forcing term related to the actual driving force
density E according to:
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where 'J_(_‘ is the ith mode displacement.

The form of radiated pressure field from a spherical source is known
(e.g. Morse, 1948) and allows the integral on the RHS of eqn 8 to be replaced

by ' A 1 w 3 I tP’NLAS was: ibmh‘lkgswmwstsw ...... .m
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where A’ - the set of A coefficients of the jth modeat at _
' I;

5mm ‘ ?M(<“¢)?M(<“¢)o\(ws¢)3 DW-‘W
° N I’

where u’ is the density of water, c the speed of sound in water , is
the wave masher and ,M - K_R

M,“ is the hankel function and the prime denotes its derivative.

Note that a uniformly applied pressure driving force allows c to be
represented by. . A 3 .v I

:9; = (91”) Z P‘KSO,W“
Is

bl‘l

'l'he modal coefficients ,Q;,if known, can then be used to calculate power
radiated and radiated pressure fields using standard expressions (es Morse 1953)

Truncation of Modes and Water Pressure Terms

Equation (8) represents aninfinite number of equations, each having an
infinite sum onthe ms. The argments as to how many modes should be included
are complex and are not presented here. Suffice it to say that, for the present
work, 3 modes were accounted for.

Truncation is again required for the integral term (eqn 91. and the criterion
adopted there was thatm should exceed the maximum value of In)“

Determination of 53220:: Stiffness

Diagram (2) illustrates the support and spherical cap actually used in this
study. The transducer was examined with the support in 5 different cases:

1) All elements present

2) Element 1 missing

3) Elements 1.2 missing

4) Elements 1,2,3 missing

5) Elements 1.2.3.4, missing

  



     

The stiffnesses were determined by finite element analysis a description
of which is given adequately elsewhere (PAFEC Manual 1976).

RESULTS

The partial sphere transducer studied had a radius of curvature, 48mm,
thickness 1mm and semicap angle 14.720. The material used was me which has
a Young's modulus of 8.13 x 10" and Poisson's ratio 0.329. The geometry of
the mounting for the transducer has already been described in the previous
section. Table 1. gives the stiffnesses for the five cases studied.

Figure 3. shows a plot of log,,\5‘, 5 being the matrix, S, of equationul),
against dimensionless frequencyn. for case 1. Three modes are indicated in the
range O<JL<|Q Care must be taken not 'totake the point that is! changes from
imaginary to real as a node: it is not.

Table 2. shows the predicted frequencies and the actual frequencies measured
in air. Agreement is good for mode 1 and the one example of mde 2. In mode 3
the predicted frequency is high by a factor of just over 41. This arises becausew
approaches the lowest natural frequency of the support and it is no longer suf-
ficient to consider the static stiffness.

The shapes of the three modes for case 5 are shown in Figure lo. The figure
justifies the earlier assumption that the tangential component of displacement
may be neglected for thellst three modes. For the most part, the tangential
component is well under [10th the normal component of displacement.

Table 3. shows predicted and actual frequencies for water loading. In all
cases 40 pressure terms were considered. The predicted reductions in frequencies
of the 3 trades are respectively 1;.1, 5.8 and 8.5 kHz compared with actual reduc-
tions of 3.1, 5.5 and 3.8.

The differences in the results have almost certainly arisen because of
experimental error of determinining' the resonances in water and, further, that
the actual transducer was notset in a spherical baffle. Therefore theoretical
boundary conditions were not replicated exactly.

Figure :(5) shows the variation of pressure, on the axis of symetry of the
transducer, with frequency as predicted by the theoretical model for 20 and 40
pressure terms and as obtained experimentally. The figure indicates good agree-
ment between the model and experimental, the principal differences arising
because of the slight differences in predicted and actual resonant frequencies.

CONCLUSION

 

The results indicate that the model for predicting the modes and their
frequencies in air is particularly reliable, the differences between predicted
and practical measurement in the case studied nowhere exceeding 1.51. Even in
water, the differences that do arise are attributable to the application of dif-
ferent boundary conditions in the theoretical and experimental cases. This
difficulty could be resolved by one of two ways:

a) To simulate mathematically the actual boundary of the transducer and
support of the transducer. This, however, poses analytical difficulties
arising from mixed boundary value problems.
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b) To set the experimental transducer in as near perfect a spherical baffle
as possible.

It is unfortunate that the easiest case to deal with analytically is the
most difficult to set up experimentally but it would appear to be the
only feasible way at present.

Finally, an important and interesting result is that only two modes bracket-
any frequency of interest need be considered for transducers of mass and stiffness
characteristics comparable with those considered her; this is condition satisfied
by most transducers.
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TABLE 1

Krr Kzz Krz KzR K
x10'9 x1o'9 x10‘9 x10'9x1o'3

-.295 1.621

 

Table of Support Stiffnesaes in SI Units

TABLE 2

mum
    

  

   
  
  
  

   

   
  
  
  
  

   
  
  

  
  

16.93(16.74) 42.02 90.63
16.30(16.07) 41.93 90.57
15.l7(15.16) 41.06 88.61
14.85(14.79) 40.96 88.51
14.19(14.02) 40.59(40.45) 88.01(84.28)

Table of frequencies (kHz) of the first three modes in air.
Experimental values, where available, are in parenthesis.

 



 

Table of frequencies (kHz) of the first three modes in water.

12.4(12.6)
12.0(12.1)
11.0(11.2)
10.8(11.3)
10.1(10.9) 34304.1)
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79.5(80.3)

Experimental values are in parenthesis.
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1.

2.

3. Variation of ‘5‘ with dimensionless frequency,.0— .
Three resonances are indicated by arrows

la.

5.
axis of symmetry.

 

figure 1

Geometry of the shell

Geometry of the support

The shapes of the first three modes

Variation of Pressure atil m from the transducer on the
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figure 5
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