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1 INTRODUCTION

A recent area of much research activity inthe field of passive SONAR surveillance
systems. has dedicated to the development of signal processing tools for detecting and analysing
short term, broad—band signals (transients). This paper derives two transient detection
algorithms which utilise existing processing techniques. The transient signals we study are of
many varieties. some of which are of a random nature. By random we mean tltat the exact
nature of a transient signal generated by an event is unpredictable a priori. In this paper we
shall only discuss algorithms which aim to detect transients and avoid discussion of the analysis
problem. The algorithms considered must be capable of detecting a wide variety of signals.
One common feature of these transients is that they tendto be short in duration and are
relatively rare events. These transients signals are immersed in oceanic background noise and
may be at relatively low Signal to Noise Ratios (SNRs).

The premise on which this work is based is that one is interested in detecting any events
which do not appear to be consistent with the background noise. The advantage of this
approach is that one makes no assumptions about the nature of the transients one is
endeavouring to detect. so one does not unfairly discriminate against any signal types. resulting
in techniques which are widely applicable. The disadvantage is that for any given class of
signal one may be able to construct a detector which has better performance than those proposed '
herein. .

Most of the transient detection algorithms previously proposed in the literature make
assumptions about the nature ofthe transient signals which they aim to detect. These
assumptions may be quite specific. as in [1] where it is assumed that the transients are decaying
exponentials or relatively general. as in [2] where it is assumed that the transient signal produces
a significant 'foot print‘ in the outer regions of the bispectrum. These. and other techniques
[3.4.5]. by restricting the' signal type tend to exchange good performance on a small subset of
transients for a loss of performance on transients outside this sub-set.

2 FUNDAMENTALS

Since this paper deliberately avoids modelling the transient signals to be detected, the
only realistic route remaining is to model the background noise. Here we shall assume that the
background noise can be modelled as a wide sense stationary Gaussian randomprocess with
zero mean. There are several pans to this assumption the implications of which can be
profound. The assum tion of wide sense stationarity is more specifically stated by saying that
one requires the statistics of the signal (up to second order) to be approximately time
independent. over any analysis window considered. The assumption of Gaussianity enables us
to restrict our attention to the first two moments of the data. However. not all oceanic
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background noise signals are Gaussian in nature. One example of where Gaussianin is a poor
assumption is in the polar regions where the noise of 'ice cracking“ [6] can produce a skewed
non-Gaussian random process. Such problems may be nritigated since SONAR systems often
beamform data from many hydrophones prior to any detection algorithm. The process of
beamforrning essentially involves summing the signals from many hydrophones. The tendency
will be to make the beamt‘ormer output 'more like’ a Gaussian process than the input signal (as a
consequence of the Central Limit Theorem). Another example of a scenario where the
background noise is non—Gaussian occurs when a tonal component is present in the background
noise. These tonal signals cannot be incorporated into the Gaussian assumption and simple
beamforming does not necesme make such components 'more Gaussian'; indeed it is often the
Case that the beamfomrer aims to enhance these tonal signals.

If one considers a window of L data samples arranged in a vector. 1", defined as

49. = [x(rr) x(n-1) x(n-2) x(n-L+I)]‘

where x01) is the input data sampled at time interval n. and ' denotes matrix transposition.
Under the assumption of Gaussianin one can simply write down the value probability density
function (p.d.f.) evaluated for a particular data window. This is

 

= I . '1 1pm) mafia}? xii/2) ()

where R is the so called auto-correlation matrix defined as E] x" 3,,' ]. Thus if one krtows the
auto-correlation matrix one can evaluate (I) the result of which is a measure of the likelihood
that the data in x... was generated from a Gaussian process with the ascribed auto-correlation
function. Note since (1) describes a probability density function its evaluation can not be
interpreted as giving a probability. Yet it is still appropriate to say that if 1,, relates to a small
value of put” ) then the data window is unlikely to have arisen from a Gaussian process with a
correlation matrix R.

Indeed one need not evaluate the entire expression in (1) since the only data dependent
term is

«near-’3. (2)

This quantity is positive (due the semi-positive nature of the auto-correlation matrix). Clearly
large values of the above quadratic term correspond to small values of the probability density
function, r'.e. data windows which do not conform well withthe background noise model.

The aim of the methods discussed here is to approximate the quadratic term in (2) via
various techniques. These approaches can be viewed via different factor-isations of the inverse
conelation matrix.

Firstly we shall consider the Cholesky factor-isan'on [7]. so that

R '1 = C’C
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where C is a lower triangular matrix. Substituting this into (2) yields

oran)=xnC’C&.=an’an {3)

where 4,, = C;,, = [ql(n) q2(n) qL(n) 1’ the lower triangular structure of the matrix C

ensures that qkhr) is a linear combination of only the data samples :x(n). x(n-1). ,x(n-k+l).

The multiplication of the data vector by the matrix C can be viewed as a transformation
of the data vector x,. into the new vector an. The transformed data vector‘s correlation matrix
can also be evaluated as :

amp Gamma: CRC'=I

where I is the L x L identity matrix. This illusu-ates that the data transformation serves to
whiten the data vector. This whitening is achieved by fon-ning linear combinations of the
current data element and only the preceding samples in the data vector. As such this is simply a
Gram-Schmidt orthogonalisation [8].

The Cholesky factorisation of the inverse auto-correlation does not produce a unique
whitening transformation matrix. Another factorisation of the inverse auto-correlation matrix
is

R .1 = VA-uzA-uz V'

where ' denotes the conjugate transpose. V is the orthonormal matrix whose colunurs are the

eigenvectors of R and A’"2 is the diagonal matrix whose elements are the eigenvalues of R.

raised to the power -1l2. Thus by defining the matrix 1‘ as

I'=VA‘”2 sothat R'I= r!“

The transformed data vector 2,, = [1,, is also a whitened vector. Thus the test Statistic is

otsn)=.tn’l‘l"sn=m'rbr (4)

It should be noted that the quantifies defined by (2). (3) and (4) are all the same. If the data
vector, 3,. . is Gaussian then because the tr'ansfonnations are linear. then the vectors. 12,, and an,
are also Gaussian. We can also see that the elements of 11,, also have unit variance, thus one

can conclude that the test stau'stic 011,. ) is a Chi-squared random variable with L degrees of
freedom.
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3 ALGORITHMS

The preceding section describes the quantity we wish to employ to test the hypothesis
that a data window under examination is due to a Gaussian process with a correlation matrix R.
We now examine the practicalities of calculating estimates of this quantity. One requires that
any such algorithm is not overly computationally demanding. It is assumed that the correlation
matrix is unknown a priori, and an on line estimate of it must be implicitly. or explicitly,
calculated. The two classes of methods discussed herein use adaptive filters and time-
frequencies methods which in turn exploit the factorisations used in (3) and (4) respecn'vely.

The broad class of adaptive filters which interests us hereare the Finite Impulse
Response (FIR) lattice filters. The lattice structures which they incorporate perform the Gram-
Schmidt orthogonalisation required to use (3). The class of FIR lattices can further be
subdivided into the gradient based algorithms [9] and the exact least squares algorithms The
recent development of numerically stable exact least squares algorithms, referred to as fast QR
Lattices [10], which only require 0(L) operations per update cycle. make these a feasible
candidate, The gradient methods require less computation than the fast QR formulation but
their performance tends to be marginally inferior. The above distinctions only apply to the
coefficient updates within the lattice and as such do not significantly affect the following
discussion.

The general form of art FIR lattice is depicted in Figure 1. As the input sequence is
passed down the structure its dependence on previous stages is removed. This is achieved by
use of the reflection coefficients, which are updated via the chosen adaptive scheme. The
output of each stage of the lattice is called the backward prediction error. and is orthogonal to all
the preceding backward prediction errors, Le. El bi(n) b’(n) ] = 0 for i gj.

 

  :01)
Input

Sequence

 

     
  b3 u) Backward Prediction

b0 Errors(n) 17,0!) 1120')
Figure l : Finite Impulse Response Lattice

The variance of the k u' backward prediction error is denoted as Eb(k) and is given by

Ebflc) = 51124"): 1 a (1-2.) 2, W" 12km) 2 = 34;.)
m=0
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Note the estimates 8km) are obtained by exponentially averaging the bk(rn) 2. The constant 11
should lie in the range ( 0, l) and controls the time constant associated with the averaging

process. this time constant is 1/(1-1). The Bkfll) can be recursively calculated by :

Bkhl) = Myra-1) + (1-1.) bk(n)2

Using these quantifies (3) can be evaluated using :

L b 2

Gabi-fl (5)
Ir=1 5d")

This approach is most suitable for use with the gradient based lattice filter algorithms. The fast
QR lattices calculate this quantity in a far more direct fashion. their update equations use a
variable called the likelihood variable. which can be expanded as

" .1
otxn)~xn'[2 l"'"'xmam'] an (6)

mw

where the term in the brackets is an approximation to the input auto~correlation matrix. so the

above is a scaled approximation to at a. ) .

The second general approach we consider is based on the factorisau'on in (4). We can
re-express (4) as: '

L . 2
dxn)=xn'l'r'xn=2M

k=1 11:

where the y, ‘s are the eigenvectors of R and the M are the conesponding eigenvalues. The
problem normally is that this eigen decomposition is difficult to evaluate. However a result
presented by Gray [11] allows us to approximate this formulation. This result can be para-
phrased as saying that the eigenvectors of an auto-correlation matrix tend to the vectors

1* = I I leII'k/L e47flk/L eZIdHL-IMLII

as L—roo . The inner products ofthe above vector with the data vector gives the k m Discrete

Fourier coefficient. X(k,n). of the n "‘ data window. The corresponding approximation to the
eigenvalues is

1,. = E! mam/21

Thus another approximation to our test statistic is

Proc.l.O.A.Vol15 Part 3 (1993) I 555  WWWWWW.m.m......,.mmmmmm...J



 

Proceedings of the Institute of Acoustics

THE DETECTION OF UNDERWATER ACOUSTIC TRANSIENTS

LIZ3 par," 1 2 7

M") El/X(k,n)/2] ( )

The quantity /X(k,n)/ 2 represents the spectrogram of the data, evaluated using no

windowing. The divisors. El /X(k,n)/ 2 1. in the above can be estimated by formingaverages of

the spectrogram. From this stand point the above expression can be thought of as representing
sums of the normalised spectrograms along lines of constant frequency. In many applications
normalising the spectrogram is a standard procedure. justified on heuristic grounds, yet here we
present a theoretical reason for employing such a procedure.

The exact choice of averaging procedure employed to form estimates of El lX(k,n)/2 ]
is not a matter for discussion within this paper. We shall use the following aver-aging scheme.

mainly because of its computational simplicity when employed on a real time system.
II

E! /X(k.n)/ Z 1 su-a) 2 a” mam/2
m=0

4 DETECTION THRESHOLDS

As we have seen the test statistic is a chi-squared random variable with L degrees of

freedom when the input sequence is a Gaussian process. Using this we can set the detection
thresholds for any of the above methods. Such thresholds can be obtained directly from
tabulated values of the area under the chi-squared curve. An alternative approach is to use a
third order approximation to the chi-squared-statistic. based on the normal distribution [12].

Specifically if la is the '2 value' for the normal distribution which leaves an area of 0. units

under the normal p.d.f. Then the corresponding point on the chi-squared curve with L degrees

of freedom is given by

L {1 - 2/(9L) + law/(51)} 3

5 THE DATA

In order to test the performance of these methods a selection of measurements of
underwater acoustic transient signals were acquired. These measured transients were recorded
at a relatively high SNR. Besides the measured transients. a time history of oceanic
background noise was also obtained. The transients were then sealed and added to the
background noise. A scale factor was determined for each transient which rendered the

transient 'barely audible' in the background noise to generate signals at various SNRs. These
scales factors are clearly subjective and do not represent absolute values. they do however
permit comparison of the methods across the set of transients in an intuitively a pealing fashion.
We denote this subjective SNR as 0 stuV Two examples of time histories gor the transients

studied are shown in Figure 2.

see Pme.l.O.A. Volts Part 3 (1993)
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Figure 2 : Time Histories of Two Example Transients

6 RESULTS

We firstly demonstrate that the methods summarised by equations (5). (6) and (7)
produce broadly the same results. Figure 3 shows the test statistic. calculated for the transient
depicted in Figure 2a) immersed in the background noise at 6 stub. calculated using each of
the three techniques described herein. The threshold level shown is set using a value of Z‘Ir
equal to 6 and the normal approximation to the chi~squared has been employed. In this
example each of the three methods clearly detects the transient. From these curves one is
unable to easily discern if any one of the methods performs significantly better titan either of the
other two. We require a comparison technique which is more discriminating.

To obtain a more sensitive measure of which method performs best we proceed by
selecting a value of la at which to set the threshold Then the transients are added to the
backgron noise at various SNRs. The lowest SNR where a transient is detected is then found
for each of the methods. Here to reduce the simulation burden we restrict our attention to only
the spectral method as summarised by (7), and the fast QR lattice. as summarised by (6).
These threshold levels, measured in c1me are shown in Table l for a selection of transients,

numbered from I to 6. For both of the algorithm 1:09999 and L = 64.

III-.-
l-IE- 0-75
“IE-I 1.25
Table l : Detection Thresholds for the Spectral Detector and the QR Adaptive Detector
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Figure 3: Test Statist for the Three Detection Algorithm
:1) Spectral Detector (7). (b) Adaptive QR Detector (6). (c) Gradient Adaptive Detector (5)

In the above table we see that in general the two methods are successful at detecting
transients down to levels where the untrained ear is struggling to detect the signals. The only
two examples where the ear performs better that the automatic detector. i.e. for transients 4 and
5. are the two examples where the transient signals are significantly longer in duration than the
analysis window. Clearly if the analysis window is not of a suitable length then a degradation
in the performance of a given detector is expected.

7 CONCLUSIONS

We have illustrated that transient detection algorithms can be constructed from existing
signal processing tools. Three algorithms were presented whose performance often produces
accurate detections down to the same level as the untrained human ear and in some examples
significantly below that level. These algorithms are relatively simple and can be, and have
been, programmed on real-time signal pmcefiing chip.
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