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SUMMARY

The "sonar equation®, used in design or assessment of sonar systems, generally
gives results with an error or uncertainty which may be important. Its
examination permit to propose an improvement of this methodology, leading to a
modified results form; needs could be more satisfied and this should lead to
an evolution in design of associated noise, propagation,.. models. This
improvement can result of a stochastic point of view, or of a method inspired
by the fuzzy sets theory. An example is developped, showing the consequences
in applying the first of those methodoleogies.

"~ 1. SONAR EQUATION EXTENSION

The design and the assessment of a sonar system lay on the knowing of the
signals and noises power levels and of the influence of the processing on
those levels. In this aim, the "sonar equation * [1 to 4] is generally the
first and main toocl. We try here to propese improved methodologies, which
would permit to obtain more sophisticated results in the use of this equation.
We recall that the sonar equation is expressed in terms of "sonar parameters"”,
whose valuations are in dB ; each term is depending of some "elementary"
parameters, and, as a general rule, its value is obtained, for a given set of
those elementary parameters, by use of an experimental or theoretic model or
possibly by direct measure. For example, for a passive sonar, working in a
frequency band W, on a source (spectral line) level SL and a noise spectral
level NL, with a transmission loss TL, a directivity index DI and a temporal
processing gain TG, the equation gives the "recognition differential™ RD :

{1} RD = SL - TL - NL - 10 log W + DI + TG.

RD is the signal-to-noise ratio to just perform a certain function, and the
equation is valid under the condition making the equality firm.

At the present time, the sonar equation is, as a rule, a determinist equation,
linking determinist quantities which corréspond to a set of elementary
parameters. Knowing the values of this set, we search the system performance
RD ; knowing the performance and a part of the parameters, we search the other
parameters.

Nevertheless, some sonar parameters values can be known only with imprecision
and uncertainty : they are measures with errors, or mean values of varying (or
random) quantities, or outputs of models depending of unknown parameters,
unverified hypothesis or subjective values. Moreover, we can be interested in
a use (perhaps to mask the ignorance generating the preceding imprecision and
uncertainty) of the sonar equation conditionned, not by a set of parameters
values, but by the belonging of the parameters to a given domain, called
"uncertainty domain". Lastly, some values of the parameters may be more likely
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than cothers. We shall call uncertainty state of a parameter, the fact to
belong to an uncertainty domain in a given manner.

In that way, the results given by the sonar equation are provided by unknown
uncertainty (and imprecision) : they can depend on both a parameters
uncertainty state and a non exact (for example random) deduttion mecanism
between parameters and performance. Then, knowing the parameters uncertainty
state, we can search the uncertainty state of the system performance RD ;
knowing the uncertainty state of the performance and of a part of the
parameters, we can search the other parameters uncertainty state.

We can think of three metheds to assume the preceding programme.

— The first method is often use in classical physics : we consider the
problem and the result as determinist, we associate a result to a set of
values of parameters and we perform an error calculation by interval analysis.
This method don't use much information. An uncertainty domain is an interval,
with total or null determinist membership.

— The second method is deduced of the subjectivist school in probability
theory : we consider the problem and the result as random and we translate the
uncertainties and frame the result by means of moments or probability laws.
This method asks a good information. An uncertainty state is represented by a
random variable state, which implies belonging domain with probability law.

— -The third method proceeds from fuzzy sets theory : we consider the problem
and the result as provided with uncertainty and we translate the uncertainties
and frame the result by means of fuzzy description or by possibility theory.
Perhaps this method can compete with the preceding in the problem matching and
in the information request. An uncertainty state is a domain with degrees of
membership and is represented by a fuzzy quantity.

In this frame of taking into account the uncertainty character, we have to
deal with non-determinist sonar relations ; such a relation can be :

= an evaluation of a combination of sonar parameters (A depends of the
parameters via B) : :

(2) © € D(O), A=B{O) ; :

~ a comparison (equality or ineguality) of two combinations of sonar
parameters (A and B are each depending on a subset of parameters) :

(3) QeDifdy, & e D(O), A{Q) & B(O) ;
In those relations, we have, with i € (1, .., m} and § € {1, .., n},
(4) A = Xy a0, B(O) = Xj By(Oy),

where, V i € (0, .., m) {(resp. J € (1, .., n}), £}y (resp. ©4) is the subset
of elementary parameters of which A; (resp. By) is depending. We call 3 (resp.
©) the set of parameters, obtained by reunion of subsets 0; (resp. 64). We
suppose each parameter provided with an uncertainty state and, then, belonging
to an uncertainty domain (a known parameter is translated by a domain reduced
to a point, and a total membership) : we call D(l) (resp. D(O)) the
uncertainty domain of the whole set of parameters 0 (resp. 6).

2. STOCHASTIC SONAR EQUATION

We suppose that the parameters of {1 and © are random variables, each with a
probability law which represents the uncertainty state. Then, Ay and By are
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alao random variables, and so are A and B. The relations (2) and (3) where A
and B are random quantities are “sonar stochastic relations”.

In the case of the relation (2) (evaluation), we can deduce, conditicnally on
the fact that © belongs to its uncertainty domain, a mean values relation and
a variances relation :

(5a,b) ¢ ©c p(®), E{A} = E{B(®)}, o2{a) = ¢?{B(O)}.
The moments, in those relations, are obtained by :

{6a) ¢ ® ¢ p(@), E{B(8)) = Zj E(By(83) ],

and, with statistical independance of the subsets, V 3, 94, by :

(6b) ¢ ® € D(®), o2(B(0)) = L, o2(By(8;) }.

When some subsets ©4 are statistically dependant, we can have an over=~
estimation, by using the Schwarz inequality, in the form : :

(7) o2{Z; uy) s EiTy10%(upiod{uy))1/2,

In using a normal law, the result can be framed in a confidence interval [5]
at level p, p € )0, 1[, such that :

(8) Pr[{E{(A) — ko(A}) < A < (E(A] + ko{a}})] = p,

(or > p when O{A) is over estimated). For example : k = 1.96 with p = 0.95,
k= 1,28 withp = 0.8, k = 0.67 with p = 0.5,

In the case of the relation (3) (comparison), we can search the uncertainty
. domain D(f2) on which, conditicnally to © € D{©), the probability Pg, that the
relation A({}) & B(®) is satisfied, is not null ; by evaluation of this
probability, the result is written : '

(%) vV Qe DY), Pg(2) = Pr[A(fl) « B(8) / B € D(O)].

This last method can permit to take into account the sonar temporal aspect.

3. FUz2ZY SONAR EQUATION

We suppose that the parameters of ) and © are fuzzy gquantities, that is to
say that each parameter is represented by the giving of a fuzzy set on R.
This fuzzy set is, in fact, a mapping p of R into [0, 1] ; M(x) is the
membership degree of x to the fuzzy quantity. The support {x : x € R,
ui{x) > 0] of the fuzzy quantity is identical to the uncertainty domain of the
parameter. Then A; and By are also fuzzy quantities and s0 are A and B.

More precisely, we use, if possible, representations by [6] "fuzzy intervals"®
{that is to say "convex fuzzy quantities”, i.e. they are such that V x € R,
VyeR Vzelx, yl, p(z) 2 min{p(x), piy))), ®"closed-generalized fuzzy
intervals™ (of which B is upper semicontinuous, i.e. their a-cuts are closed
intervals), “compact-generalized fuzzy intervals" (preceding "closed-
generalized fuzzy intervals® with compact support), "fuzzy numbers™ ("compact-
generalized fuzzy intervals™ with unique modal value), multimodal fuzzy
quantities (finite "union” of "closed-generalized fuzzy intervals®).

The relations (2) and (3) where A and B are fuzzy quantities are " sonar fuzzy
relations®.

In the case of the relation (2) (evaluation), we can deduce the fuzzy
representation of A from these of the By by means of c¢lassic operations on

fuzzy quantities (6]. The fuzzy quantities F and G being represented by Hp{x).

and Mg(x)}, with x € R, we have the following representations
(10a) HeF +G : Bg{x) = sup{min{upl{y), MHci(x - ¥)}, vy € R) ;
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{10b) H=F -G : Py (x) = sup{min{ppi{x + yv), Me(¥)}, vy € R} ;
{10c) He - F : Hp(x) = Pr(- x) ;

(10d) BR=1/F : My{x) = up(d/x), x = 0 ;

{10e) H= oF : Beix) = pp(x/a), a # 0.

4. APPLICATION EXAMPLE OF SONAR STOCHASTIC EQUATION

We illustrate those methodologies on a very simple example, in playing
essentially on one sonar parameter and one elementary parameter {actually such
a use of sonar equation depends on some 9conar parameters and on a lot of
elementary parameters).

We consider the passive sonar case described in the first paragraph tco valuate
its performances + on the one hand in term of signal-toc-noise ratio, on the
other hand in term of range prediction.

The problem is governed, in the determinist point of view, by the sconar
equation (1), in which RD has a given value, corresponding to a "standard
performance” ; the sonar equation is valid for conditions providing this
standard performance. For any conditions, we call [3] "figure of merit™ and
"signal excess" the combinations :

(11) FOM = SL - NL - 10 log W + DI + TG - RD ;

(12) EX = SL - TL - NL - 10 log W+ DI + TG - RD = FOM - TL.

For EX 2 0, the conditions generate a performance at least equivalent to the
standard one and FOM represents the maximum transmission loss allowing such a
performance.

The example is constructed with the following numerical values :

- 8L =136 cdB, W= 0.5 Hz, DI = 19 ¢B, TG = 0 dB, RD = 0 dB.

— We have a set of classical curves [7] which gives the noise level as
a function of the sea-state ; we have in dB, for sea-state j € {0, ..., 6],
NLp = 43, NIy = 53, NL; = 59, NL3 = 63, NLy = 6§, NLg = 67, NLg = 68,

— The noise level of the example is only known in a subjective manner :
the various observers agree on a only point, namely the sea-state is about 3.

— We have a transmission loss model [8)] giving TL as a function of
distance d, on the form : TL = £(d).

The determinist point of view gives two results :

~ performances in term of signal-to-noise ratio is represented by EX as
a function of d (see figures 1 and 2).

— performances in term of range prediction is represented by the set of
distances d such that EX 2 0, that is to say FOM 2 TL = f£(d). The figure 2 (in
which FOM = 35 dB) shows a range prediction of two intervals [0, 35 km) and
[61 km, 68 km], and a punctual possibility at 125 km.

The stochastic point of view pose the problem of obtaining the statistic
knowledge about the sonar parameters (or the elementary parameters). We
construct this knowledge by :

— Xkeeping the determinist quantities : W = 0.5 Hz, TG = 0 dB,
RD = 0 dB.

— deduction of mean values from determinist values :
E{SL) = Slger = 136 dB, E(DI} = DIgey = 19 dB, E{TL) = £(d).
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— choice of root mean sguare values : OGsp = 1.5 dB, Opr = 1.5 dB,
gry = K'd (in dB), with K' = 0.05 dB/km to have about 3 dB in the first
convergence zone.

— choice by association to "sea-state j to k" :

..of mean wvalues : E{NL}yx = (1/2) (NLy + NLx). We remark that
E{NL} 3x # NL(y4x)/2

..of root mean square values : Oypjk = K{(NLx,; - NL4-3), with
K= 0,43 to have Oy133 = 3 dB.
We translate the subjectivity about the noise level in looking five cases of
sea-state : 3, 2 to 3, 3 to 4, 2 to 4, 1 to 5.

The stochastic point of view gives two results :

— performances in term of signal-to-noise ratio is represented (see
figures 3 and 4) by the random variable EX, as a function of d, with :
E{EX} = E{FOM} -~ E{TL)} = E(SL} - E{TL} - E{NL} - 10 leg W + E{DI} + TG - RD :
o2ex = 0Zpou + 6%, = o, + Opy + o2y, + 02p;.
EX, for each value of d, can be framed in a confidence interval at level p (we
suppose EX has a normal law) :
Pr[(E{FOM} - E{PT} - XkoOpy) < A < (E{FOM) - E{PT} + kOpx)] = p.

— performances in term of range prediction is represented (see figures
S and 6) by the set of distances d such ‘that Pg{d) = Pr[FOM - TL 2 0 ; d] is
strictly positive, and the value of Ps{(d) (we suppose EX has a normal law).
We can note that Opyx is variable with distance d.

We have a synthesis on figures 7 and 8 : they present the distances @, for
which, in the random case, the probability Pg{d), of having a performance at
least equivalent to the standard one, is upper than 0.7 (fig. 7) and 0.5 (fig.
8), for different sea-states compatible with the subjective noise level
knowing (sea-state is about 3) ; the determinist case figures just for
comparison.
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