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ABSTRACT

We present a family of optimum array processings. It is shown that various
types of processing, such as "classical beamforming" or "maximum likelihood (or
optimum) beamforming” can be represented by structures generated with a unique
optimization model by playing upon the criterion and the constraints or by
considering peculiar input processes. Also, are permitted the qualifying and
the comparison of the obtained structures.

INTRODUCTION

This study is placed in the frame of spatial array processing, for frequency -
‘direction analysis, with the following characteristics :

— Passive mode : the signals and the eventual jammers are random and carried by
plane waves. When necessary,the input functions are stationaryin time and space.

- Basic geometry : the antenna is a linear array of equispaced sensors.
~ Narrowband output : the system performs a frequency-direction analysis.
- Processing limited to a static point of view.

Such an analysis can be built on various resolution methods, each generating
one or several structures. To their performances are connected several general
problems such as improvement, qualifying (in the matters of measure and
optimality), or comparison.

Some methods are well known : Conventionnal Beamforming Method (C.B.M.},

. Maximum Likelihood (or Capon Optimum) Method (M.L.M.), Maximum Entropy (or
Burg) Method (M.E.M.), Eigenvectors Decomposition (or Pisarenko) Method
(E.D.M.). The second one (M.L.M.) results of an optimization procedure, applied
to the spatial part of the processing, with a criterion of Capon's type ; the
processing can be imagined with a spatial part following or preceding the
temporal part. In the same way it can be thought of the similar systems in
which the optimization is applied to the temporal part. So, at the reference
structure of the M.L.M, correspond other structures by 3 different types of
duality. [1,2}
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The basic idea of MLM can be generalized by extending the optimization
procedure to the temporal part of the structure : it gives a "Capon Bioptimum
Method"(B.0.M.) or a "Capon Global Optimum Method"(G.0.M.) according to a
separate or to a global mode of temporal optimization extension. [3]

The Capon's conditions of optlmlzatlon used in MLM, BOM, GOM, corresponds to a
linear structure with a unit gain for the conSJ.dered output var:Lable and a
minimum output mean power.

We show in the follow:mg that the various types of processing derived by the
four methods CBM, MLM, BOM, GOM, can be represented by structures generated
with a unique op(slmlzatlon model : the latter is modulated by the parameters of
the criterion, submitted to constraints or considered for peculiar input
processes ; its optimization criterion generalizes the Capon's conditions. Thus
are permitted the qualifying and the comparison of the derived structures. For
example, in table 1, we can found some characteristics of structures generated
by the four methods, with reference to points of the model of the next section
and to fiqures (l.a,b,c,). There, we denote : Temporal Fourier Transform :
FT;Spatial Fourier Transform : sFT; Classical Beamforming (time delays) : CB;:
Capon's Optimum Beamforming : COB; Capon's Optimum Spectral Analysis : OSA;

Spatial Capon's Optimum Spectral Analysis : sOSA; followed by : —3
replaced by : <> .
Type of Type of Reference Dual Derived
Method beamformer linear structures | structures
—analyser structure * * k% structures
CBM classical |separable FT —>CB CB —> FT CB <> sFT
I
MLM classical separable FT — COB COB —> FT |COB <> sOSA
* % ~optimm CB —> 0SA
OSA—>CB |CB <> SFT
BOM bi-optimum |separable OSA —> COB COB — OSA |COB <> sOSA
* * .
GOM global |general eee.. Unique sStructure ..........
| |-optimum | . :
Remarks :

* the reference structures have an imposed "narrowband input".

** in MLM and BOM the optimization is built on the input of the optimized

sub-structure ;

*kk

: spatial-temporal order duality;

H)M spatial-temporal exchange duality;

- MM (3) : optlmlzatlon support exchange duality.
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in BOM the second optimization is conditionned by the first.
- CBM, MM (1),
- CBM, MLM (2),
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OPTIMIZATION MODEL

Problem

We consider a linear array of n, equispaced sensors. The sensor spacing is L.
The observation is constituted by N, samples of the complex input n,-vector

V (t,), with t = t +kT. The sampling period is T. The system is a discrete
linear structure which extracts, at time t,,from the time period [t~ (N + 1)T,
t,] the component at frequency » in the direction 6 ; the variable 8 can be
replaced by the spatial frequency M , with = v cos 8/ C,, where cg is the
constant wave speed.

Structure of the processing family

The processing is performed by an imposed linear structure varying with v and
@ ; this structure can be (figures l-a,b,c) :

- general (without constraint) : it is a n/N,-filter H varying with v and © .
- separable (by constraint) : it is a structure built on a N,~filter T
("temporal") varying with ¥ and a n,-filter S ("spatial") varying with m

(or & and » ) ; it can be of two types, temporal-spatial and spatial-temporal,
leading to an equivalent n,N,~filter which can be put in the formH =S ® T
or H'= T ® S where H,S,T are row-matrices and ® represents the Kronecker
product of 2 matrices. X' and X' are the transposed and conjugate-transposed of
the matrix X.

Optimization of the processing family

The optimization is global when using a general structure and separate when
imposing a separable structure. The criterion dictates to the structure :

- to have a unit gain for the considered variable (» , 6 , (»,0)),

— to minimize the output mean power bound to a pseudo-input process represented
by a given covariance matrix G called "optimization matrix".

When the optimization matrix equals the covariance matrix of the (true) input
process, this criterion reduces to Capon's conditions ; then we say that the
optimization matrix is matched (to the input process).

Cancelling constraint

By constraint the optimized structure can cancel the effect, on the selected
steering, of a given "set to cancel" of frequency-direction couples (for a
general structure), of frequencies (for a temporal sub-structure), of

. directions (for a spatial sub-structure).

Such a set to cancel can correspond, for example, to intermittent jammers, when
the input statistical second-order is difficult to know or to estimate.

This constraint is obtained by adding to the criterion the cancelling condi-
tion : the structure must have a zero gain for the given values of the variable
to cancel.

113
Proc.l.0.A. Vol 7 Part 4 (1985)



Proceedings of The Institute of Acoustics

OPTIMUM ARRAY PROCESSING FAMILY

Separability (ctl4])
The structure, solution of the optimization model, can be separable

- by constraint ; in this case both the optimization and the cancellation are
separated for the two sub-structures.

- by given separability of the optimization matrix : G = A ® B ; the eventual
cancellation condition must permit it.

- by consequence of the separability of the input covariance matrix " with
Capon's conditions (G =" =a "'® M ) ; the eventual cancellation condition
must permit it.

Optimization procedure [4]
We call :

X a conplex random n-vector and ['= E { X X +} its covariance matrix ;

5, Cls+e+,C  different, complex, deterministic n-vectors ;

G a complex, hermitian, strictly positive definite, optimization matrix ;

t t .
C=‘[Cl;...icm] ,PcG=I—c(c+G_lC)—C+G—17
PcG.=I,ifthereisnOCj (m = 0).
The complex row-matrix h, with order n,
satisfying hd =1 is - =4
- S G P.g
he =0 h(d,c,G) = ———; '
S GT P g8
h:inf hGht
g h
1
with the associatedminimum:p(g,c,G) =inf hGht =
. + =1 P)
h 376 e,

The output mean power of h, for X at the input, is

+ o~ + -1
e PP G )

)2

p (3,c,G) =
rl

S—
(S G PcG-

and G =1 = pp(S,c,f’):p(S,c,r‘).

Here I = unit matrix,
A" inverse matrix of A,
A" = generalized inverse matrix of A,
,
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RESULTS

Some results are given here for processing without cancellation

presented in [3, 4, 5] .

; others are

First, characteristics and performances of some members of the family can be
found in tables 2 and 3. They correspond to the following notations :

v j (g complex input sample in t ;. on sensor j ;
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T
v = [V, (tk),..,Vne(tk)] s ™, 8)
: T (Ne)
vs=[vy (Eopdoeor V5 (t )] (ng) ‘e ———9(1)
ut= Y710 vk TR
=L1Yq e “e] (Ng)
I+ + b oF :
U =[Vk_Ne+”. : \ Figure 1 - a) )
v 2]
r, =E{v, v,"} K ¢ e,
N =eg{Y; v (Ne) @ s
Yy { 3713 (We) S 1)
= + —_—
ry=={v v’} oo LT @
=ef{u v’}
“2mivT —ZWEV(Ne"'f)T:]"' Figure 1 - b
£=[1,
d:[l’eZTriML’”’ezTriH(ne—ﬂLJ"' ] (6) (»,6)
(e 5 oLt
— e
Afterwards, discrimination diagrams of a (N¢)
set of four sources in white noise by
four beamformer-analyser (classical,
classical-optimum, bi-optimum, global- Figure 1 - ¢
optimum). They correspond to the
following problem : 0.5 0.2
- — number of sensors : n =5 l T NeT T +
e ’ M .
. 0.5
_numberofsamples.Ne=1o; v __.r__-+ +
- 4 sources of signal to noise ratio 8, 0.5 0.2 - +
located in the (¥ ,M) - plan according - + N.T
to the chart figure 2 e T ’ 0
_ 02 o0 0.2
- the level lines of the 4 diagrams are Ne L ne L
spaced by 0.5 dB. (figure 3). Figure 2
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Optimization caracteristics about
structure St and optlmlzatlon matrix
oM

Resulting structure for any input
process

I St : general
OM : matched

1 general structure
"global optimum beamformer-analyser”

2 separable structures‘
"bi-optimum beamformer-analyser"

II St : separable
OM : both matched

ITIT St : separable 4 separable structures
OM : one unit matrix and "classical~optimum beamformer-
one matched analyser"

IV St : general 1 commutative separable structure
OM : imposed and separable (Gg® G,)

or

St : separable
OM : both imposed (Gg¢ ,G )

V St : general
OM : unit matrix

1 commutative separable structure
"classical beamformer-analyser"

or

St : separable
OM : both unit matrix

Table 2
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Table 3
Remark : In case III there are 3 other analogous formulas.
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Classical -optimum Global -optimurn
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Classical Bi -optimum
Figure 3
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