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Introduction

In the finite element mnalysis of structures with tapered mem-
bers, a commonly used approximation is to represent each tapered
menber by & mmber of colinear members each of uniform but different
properties. Obviously more accuracy is gained by finer divisions,
although care should be taken when each element becomes short when
compared with the depth. However, such schemes are wasteful in both
computer storage and sclution time, end alsoc in data preparation and
punching. It is this last factor that leads to much of the frustra-
tion in computing, since humen errors occur infinitely more frequen-
t1ly then those from the machine! .

With the vehicle body in mind, beam elements with linear taper
in either {or both) plan and elevation (Fig. 1) have been investi-
gated. The work is directed to specific cross-sections of box, chan-
nel and top-hat, so that the practical application is more immediate
than schemes in which the pro?egties are deacribed by a power series
in the lengthwise co-ordinatefl).

Devigtion of Stiffness and Mass Matrix

Whilst the exact solution to the differential equaticn for a
beam tapered as described is possible to achieve, such solutions are
both numerically cumbersome and diffiewlt to differentiate and inte-
grate, Thus, the well known technique of minimising the error bet-
ween an assumed {(polynomial, in this case) function and the exact
golution is used in this paper for the beam-type modes.

For the extensicnal and torsional mcdes, exact expressions are
used as they are rather more tractable, The torsional case implies
that the cross sectional warping is unconstrained, which, although
adequate for the box section, is by no means justified for open
sections. Further work is proceeding on this latter point {2).

The displacement functions for beam—type behaviour was that
which satisfies the differentiml equation for ar untapered beam,
namely:- 2 3

v = Al + A2x + A3x2 + Ahx
= +
w A5 AGx + ATx + ABx

The stiffness matrix for these modes was obtained by the prinei-

pal of virtual work, giving
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The full expreamsiona for the terms of this matrix is given explicitly
by A1i{3) for each of the cross sections.
(4}

The mass metrix iz derived from the seme principle

W =ef " [ s

Programme Organisation

giving:

The generalised structural data format used in a previously
developed finite element programme which specifies geometry, nodal
connections, element properties, and conetrained degrees of freedom
wes sdopted. Since the assembled stiffness and mass matrices are
banded, and symmetrical, only one half of each band is stored as
"atring” matrices. The familiar and simple technigue of applying
constrainta by zeroing the appropriate row and solumn with unity in
the diagomal was not appliceble in the dynamic case, and thus the
rov and column was removed and the matrices repacked, Although more
efficient from the point of view of smeller storege regquirements,
the repacking is comparatively time consuming, particularly when
many constraints are applied.

Having obtained the reduced maseg and stiffness matrices, the
former is inverted and although it still retsins its disgonal sym-
metry, its subsequent postmultiplication by the stiffness matrix
yields a non-symmetrical full matrix, which of course, takes up
considerable storage space. Fig. 2 shows the organisation of the
Programne .,

Extraction of the eigenvalues and eigenvectors from this so
called "dynamic matrix" is achieved by the reduction to the Hessen-
berg form, followed by the QR algorithm, obtaining the complete set
of frequencies and mode shapes. No extrs storage areas were required
for these operations, since the original stiffness and mams matrices
vere no longer required.

Results

To compare with "exact" solutions, the problem of the flexural
vibrations of tapered cantilevers was used as data. Two exact
solutions ere aveilable 56} one for camtilevers which taper to a
point (e situation vhich cannot be exactly catered for by the present
element). The other is for the case of the vanishing point being
beyond the end by one querter of the actual length of the beam. Both
cater for beams linearly tapered in depth end untapered or tapered
in plan, the untapered planform corresponding to the linearly tapered
box section considered in this paper.

In terms of the errors between the exact solution and several
different element dimensions of the tapered beam element, the
accuracy of the latter is exeellent, in the fundamental and first
overtone, as can be seen in Fig, 3. Aleso included in this figure
are the results for stepped representations involving uniform besm
elements from Ref. 1.
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