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Vibration Analysis of Frames Consisting of Non-Uniform Beams

by
R. Ali and PM. Shaman

Introduction

In the finite element analysis of structures with tapered mem-
bers, a commonly used approximation is to represent each tapered

member by a number of colinear members each of uniform but different

properties. Obviously more accuracy is gained by finer divisions,

althoth care should be taken when each element becomes short when

compared with the depth. However, such schemes are wasteful in both

computer storage and solution time. and also in data preparation and

punching. It is this last factor that leads to much of the frustra-

tion in computing, since human errors occur infinitely.morefrequen-

tly than those from the machine!

with the vehicle body in mind, beam elements with linear taper

in either (or both) plan and elevation (Fig. l) have been investi-
gated. The work is directed to specific cross-sections of box, chan—
nel and top-hat, so that the practical application is more immediate

than schemes in which the properties are described by a power series
in the lengthwise co—ordinate 1 .

Deviation of Stiffness and Mass Matrix

Whilst the exact solution to the differential equation for a
beam tapered as described is possible to achieve, suchsolutions are
both numerically cumbersome and difficult to differentiate and inte—

grate. Thus, the well known technique of minimising the error bet—
ween an assumed (polynomial, in this case) function and the exact
solution is used in this paper for the beam-type modes.

For the extensional and torsional modes, exact expressions are
used as they are rather more tractable. The torsional case implies
that the cross sectional warping is unconstrained, which, although
adequate for the box section, is by no means justified for open
sections. Further work is proceeding on this latter point (2).

The displacement functions forbeam—type behaviour was that
which satisfies the differential equation for an untapered beam,
namely:- 3

v=A +Ax+Ax2+Ahx
3

1 2 3 2
w=A5+A6x+ATx +A8x

The stiffness matrix for these modes was obtained by the princi-
pal of virtual work, giving

[k] =[c1‘1’w J [51‘ [n] [21 ex) [cl-1
-1-
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by Ali”) for each of the cross sections.
('4)The mass matrix is derived from the same principle

In] =pIECII‘ [c] m
ProEamme Organisation

The generalised structural data format used in a previously
developed finite element programme which specifies geometry, nodal
connections, element properties, and constrained degrees of freedom
was adopted. Since the asshled stiffness and mass matrices are
handed, and symmetrical, only one half of each band is stored as
"string" matrices. The familiar and simple technique of applying
constraints by zeroing the appropriate row and solumnwith unity in
the diagonal was notapplicable in the dynamic case, and thus the
row and column wasremoved and the matrices repacked. Although more
efficient from the point of view of smaller storage requirements,
the repacking is comparatively time consuming, particularly when
many constraints are applied.

giving:

Having obtained the reduced mass and stiffness matrices, the
former is inverted and although it still retains its diagonal sym-
metry, its subsequent postmultiplicstion hy the stiffness matrix
yields a non-symmetrical m1 matrix, which of course, takes up
considerable storage space. Fig. 2 shows the organisation of the
programme.

Extraction of the eigenvalues and eigenvectors from this so
called "dynamic matrix" is achieved by the reduction to the Hessen-
berg form, followed by the QR algorithm, obtaining the complete set
of frequencies and mode shapes. No extra storage areas were required
for these operations, since the original stiffness and mass matrices
were no longer required.

Results

To compare with "exact" solutions, the problem of the flexursl
vibrations of tapered cantilevers was used as data. ’Blo exact
solutions are available (5,5) one for cantilevers which taper to a
point (a situation which cannot be exactly catered for by the present
element). The other is for the case of the vanishing point being
beyond the end by one quarter of the actual length of the beam. Both
cater for beams linearly tapered in depth and untapered or tapered
in plan, the untapered planform corresponding to the linearly tapered
box section considered in this paper.

In terms of the errors between the exact solution and several
different element dimensions of the tapered beam element, the
accuracy of the latter is excellent, in the fundamental and first
overtone, as can be seen in Fig. 3. Also included in this figure
are the results for stepped representations involving uniform beam
elements from Ref. 1.
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