
Proceedings of the Institute of Acoustics

 

Seabed Classification from backseatter sonar data using statistical methods

Ragnar Bang Huseby, Otto Milvang, Anne Solberg, Katrine Weisteen

Image Processing group
Norwegian Computing Center

Oslo, Norway

Abstract

The development of reliable methods for automatic

seabed classification enjoys widespread interest at the

present time. In this paper statistical methodsfor seabed

classificationfrom backseatter sonar data are investigated.

The aim of classification is to divide the sea bottom into
smaller regions and assign each region to one of several

sediment types. ‘
Statistical classification from raw data consists of two

steps; extracting a vector offeature componentsfrom raw

sonar datafor each region, and assigningfor each feature
vector a class. In this study, raw backseatter datafrom the
Simrad EM 1000 Multibeam Echo Sounder are used.

Several combinations of a total of 50 different features

are examined systematically with respect to performance

ofclassification. Thefeatures are based on the backscatter
strength, the backseatter probability density function, the

spectral distribution, and texture.

We consider classification rules which are derivedfrom
the Bayes decision rule. and involve probability models of

the features. The attention is focused on the k—Nearest-
Neighbor classifier and a classifier based on the multivari-

ate normal distribution. Yhe results show that it is possible

to differentiate between seabeds ofvarious sediment types.

1 Introduction

The present work is a part of a project ’which started in
December I990 with the aim of developing methods for

automatic seabed characterization. Participating compa—
nies are Simrad Subsea A/S, Norwegian Computing Center
(NR), and SINTEF SI (former Center for Industrial Re—

search (SI)). From June 1992, the project was merged with

the ESMAC project.

In this paper, we concentrate on statistical methods for
classification of feature vectors extracted from backseatter
sonardata. As is truein most fields that deal with measuring

and interpreting physical events, probability considerations
become important in seabed characterization because of the
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randomness under which data are generated. Statistical pat-
tern recognition techniques have previously been applied
to side scan sonar data [2].

The performance of a classifier depends highly on the
features which are used. In [9], more than 50 different
methods for feature extraction from sonar data were eval-
uated for this project, From the examination we know
that at least 20 of the features examined may be used
in seabed classification. However, only a small subset
of features should be used simultaneously. Including too
many features in the classification (using a feature vector
with a high dimension compared to the number of train-
ing samples) results in high error rates for the classifier.
This is due to a well-known phenomenon in 'statistics; the
“curse of dimensionality" [8]. Based on the previous re_-'
sults [9] we have only examined classifiers using the three
features: 0.8 Quantile, Pace D1,, and GLCM Contrast,
where 0.8 Quantile is the 0.8th quantile of the vector of
backseatter values from an area of the seabed, Pace Dh is
a feature related to the spectral distribution of the backseat-
ter signal, and GLCM Contrast is a measure related to the
spatial co-occurence matrix of the backsqatter values. For
more details on these features, see [9] and the references
given in that paper. - . .

The classification methods of- this paper are based on
supervised learning, that is, preliminary knowledge about
the classes is required. A set of feature vectors or pixels
from each seabed type to be classified is to be collected and
separated into a designiset, on which the classifiers are to
be trained. Due to the fact that there is a large number of
nuances of seabed types, one cannot expect that all possible
nuances are represented inthe training set. Thus assign-
ment of a pixel to one of the seabed types in the training
set does not necessarily mean that the area corresponding
to the pixel is of that type. Instead the classification of _a
pixel should be interpreted as the seabed type which is most
similar to the seabed of that area.

In section 2, we describe classifiers based on the mul-
tivariate normal distribution and the k-Nearest-Neighbor
classifier. Both noncontextual and contextual methods are
considered. We also present procedures for detection of
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outliers and classification of pixelsas a mixture of two dif-

ferent classes. In section 3. we describe the data and the
results. A discussion of the results and cements to the
methods are given in section 4.

The results show that it is possible to differentiate be-
tween seabeds of various sediment types. However, the de-
gree of discrimination is not known because precise ground

truth over large areas has not been available for the test sets.

Nevertheless the classification results can provide broad
guidance. In addition, our methods show a high degree

of consistency when classifying multiple passes over the

same area. We conclude that the methods can be used in a
prototype system for seabed characterization.

2 Classification rules

2.1 Traditional noncontextual classification

In noncontextual classification [1 I]. each pixel is classi-

fied onthe basis of the data for only that pixel. The methods

of this paper are based on the Bayes classification theory

[4]. Thus each pixel belongs to one of 11' classes with prior

probabilities, in, . . . , 1m. Pixels or feature vectors from
class k are distributed according to the density ft. The

Bayes decision rule [4], assigns to a pixel Class I: where I:

maximizes P(C = kIX). and

7r): fk (X )

8:1 WifiU')

is the posterior probability of class lc given the feature

vector X.

In this section, we assume that the class densities are

multivariate normal. Thus

P(C: le) =

not = tzwrttamer»-te-W-Wi'e-W. I
where dis the dimension of the feature vector space, pk is

the mean vector. 2;, is the covariance matrix, and ’ denotes

transpose. The parameters It]: and 2,, are unknown and will

be replaced by estimates in computation of P(C : le).
Training ofthe classifier consists ofestimating in, and 2,.

for k = 1, . . .,K. Let X10“), . . . , XS“) be feature vectors
which are known to be of class k. The parameters are
estimated by it). and it where

and

    

Thus the training procedure is very simple because there

are explicit formulas for the estimates.

Classification of the unknown feature vectors is now a

_ simple task. It can be shown [4] that the classification rule

becomes: assign to a pixel class I: where k minimizes

1n(det()§k)) + (X — crisper — at).

It is important to know to which extent one can trust the

classification results. If the pixel is assigned to class k, a

reasonable measure of uncertainty is the estimated posterior
probability ofclass k, P(C = Ich).

2.2 k-NN classification

' A traditional non-parametric classifier is the k—Nearest

Neighbor (k-NN) classifier [4]. As one would expect from

the name, this nile classifies pixel X by assigning it the label
most frequently represented among the k nearest samples

from a training set (with respect to e.g. Euclidian distance).

In other words,.a decisionis made by examining the labels

on the la nearest neighbors and taking a vote. The k-NN

rule is related to the Bayes decision nile [7]. r

The classifier is based on the Euclidian distance between
the samples. The Euclidian distance is not invariant to the
scaling of the features. To combine features on different

scales, a normalization of each feature is required to assure

zero mean and unit variance for each feature. The only

parameter in the model is lc. Preliminary experiments have
shown that k : 5 is the best choice for our test data.

Therefore. 1: = 5 is used in the following experiments.

2.3 Classification based on mixels

In statistical image classification, each pixel is classified
to one of the classes in the training set. Often, however, this

is not an adequate model of reality — the signals detected
in one pixel may be derived from two or more different
classes. This situation arises in two different settings.

0 In the border zone between regions corresponding to

different classes.

o When the spatial resolution is lower than the size of

some of the objects in the image.

Both of these settings are found in seafloor classification
based on EM IOOO data. Bottom samples indicate that the

seafloor model should allow mixtures of different sediment

types. and not just a number of predefined distinct classes.
Failure to take the presence of mixed pixels into account

may lead to misclassification.
In this section, we present a model for statistical image

classification, which allows each pixel to be classified as
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a mixture of two different classes. We use the term mier

to denote a pixel consisting of two different classes. The

classes which are allowed to form mixtures must be speci-

fied by the user.

The model for mixture classification In traditional sta-

tistical classification, ft (2:) represents the class-conditional

probability density of the feature vector c. For the mixture

model, let fk,,(:c) be the density for feature vector 1. ft];

is modelled as a mixture of two densities, ft and fl:

ft,i(m) = aft(1) + (l — a)ft(z),

where a is the mixture coefficient (0g a g 1). For

seafloor classification. ft is assumed to be multivariate nor-

mal. The class-dependent parameters for the multivariate

normal distribution (fit and it) are estimated from train-
ing data. Traditional statistical classification assigns apixel

into the class that maximizes fk(X). For a model involv-
ing mixtures, the mixture coefficient a must be estimated

for each pixel for each two-class mixture so as to maximize

fk.,(X). If a = i, then the pixel consists of only class k,
and ifa = 0, the pixel consists of only class ((0 5 a S l).

The set of allowed mixtures is to be user-specified.

2.4 Detecting outliers

Occasionally, the preprocessing machinery may have in-

cluded “alien objects” and a feature vector may have been

incorrectly evaluated, etc. Thus there is a need for a pro—

cedure committed to the detection of “incredible vectors".

thereby avoiding incorrect forced classification.

One way in which to formalize the problem is to test the

hypothesis

HoifE {f1i"'th}i

where f denotes the density from which the observed can—

didate vector X is drawn, and f1, . . ., K are the densities

of the classes we want to assign the pixels [7]. If H0 is

rejected, X is defined as outlier.
If we assume that f belongs to a set of multivariate

normal densities where the covariance matrix is restricted

to range over a set of positive definite symmetric matrices

where the minimum of the determinant is nonzero, it can

be shown [7] that the likelihood ratio test [1] becomes:

Declare X as outlier if

fk(X) 5 (21¢?(det(ito))-ie-im—z,t = 1,. ,.,K.

Here 6 is the level ofsignificance ofthe test, dis the dimen-

sion ofthe feature vector space, 744.1 _E is the 1000 — 6) -th

percentile of the chi-square distribution with d degrees

offreedom, and to is the class with largest det(it). if
E = 0.01, for example, in the long run 1% (or less) of the
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pixels belonging to one of the classes l,...,K, will be

wrongly declared as outliers. '
It is also possible to construct outlier tests without any

parametric assumptions on the class densities [7]. One may

define X to be an outlier if all K Mahalanobis distances

are sufficiently large,

,lc:l,.. K.
:~_ A d

(X *fik) Zkl(X —#E) Z I

However, this and related procedures yield very mild

bounds compared to the method based on multivariate nor-

mal distribution and are therefore less powerful.

2.5 ' Contextual classification

In contextual classification ([3], [5], [6], [10], [11]) the

classification rule is based on a stochastic model for the

behavior of the classes in the scene and the behavior of
the feature vectors given the underlying classes, For the

classification of a pixel, the feature vectors of neighboring

pixels are taken into account. Then a better classification

should be obtained. The reason for this is that the contex-
tual methods utilizecorrelation between neighboring pixels

wheras the noncontextual methods overlook it.

As a contextual model. we use Haslett’s [6] non-

iterative model. To explain the model, we need to define

some notation. Let the M x N image consist of MN

pixels or feature vectors X1V1,...,XM,N, where ngj =

(XUU ), ..., Xi’j(d)), and dis the number of features. The
scene consists of K classes, Ic e {1, K}. The class of
pixel (i,j) is denoted by C;j. Let P(X(i,j) | (1;,- = k)
denote the conditional probability density of Xm- given

0.3 = 1:. Define the neighborhood of pixel (i,j) as

7351' = {(i-lyj).(i.j-1).(i+1,j)i(i,j+|)}- The
a posteriori probabilities can be written as

WG-3 = k | Xajtpx'j) °< "kP(Xi.j IC-‘j = HRHDU),

where the term RAE-j) represents the contextual infor-
mation given by '

1215(1)”) : Z: [g(a,b,c,e I k)-

a,lt,c,e

[1(Xr,j—1,Xt—t,j,Xr,j+i,Xr+1,j I Xt,jik'ia,b,€, 6)}-

Here, g(a, b, c, e | It) is the probability of a particular
configuration (a, b, c, e) of classes in the neighborhood of
pixel (i,j), given that pixel (i,j) is labeled class It, and
[1(‘) is the joint probability density of the feature vectors
given the feature vector Xi’j and the classes of the neigh-
boring pixels. We will assume conditional independence
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between the neighboring feature vectors, a situation where

h is reduced to be simply the-product of the corresponding

densities. In Haslett‘s model. - 'l "

g(a,b,c, e I k) = P(e,,,-_, = a I cg ; k)‘
P(C.'_|,j = b I Cij = k) -

P(C.',j+1= C I Cij : k)P(C,-+1YJ- : t‘ I Cu 2 [6).

Then

where

Zk(D-’j) =l Tk(X.',j-1)Tt(Xt—t,j)Tk(Xi,j+1)Tk(Xt+l.j)i

K .

Tt(X.-,j) = Z P(C,-:J-: = m | 0,, = k)P(.\*,-,,- 16,-,- = k),
m:l

and

if E Dij.

This model reduces to the usual noncontextual maximum

likelihood model if the transition probabilities P(Ci'j‘ =
m I'Cl'j = k) are equal (P(C,‘/jl = m I Cij : k) = UK).

Then. the contextual factor. 21,, is l. The largest contextual

effect is achieved when P(C,-:j: = m | Cij = k) = 1,
m = k. and 0 otherwise. We use the default value of the

transition probabilities, P(C,-/j, = m I (7,,- = k) = 0.9

when m = k, and equal probabilities are used elsewhere.

3 Data and Results

3.1 Description of data sets

The data used in this project were recorded by a Simrad

EM 1000 sonar. Three series of data were available.

The first set (Set 1) was recorded at different locations

in Oslotjorden. By examination of the data we selected

five homogeneous regions of various types. These regions

define five classes: Seabed type I, Seabed type 2, Seabed

type 3, Seabed type 4, and Seabed type 5, where Seabed

type 1 is the hardest and Seabed type 5 is the softest. The

classes may correspond to rock, sand, silt, clay, and mud,

respectively, but we stress that this is not confirmed. -

The second data set (Set 2) covers a cruise from Horten,

around Bastn and up to Molen in Oslofjorden. This cruise

was supplied by ground examination at ten locations along

the route. The seabed consists mainly of a mixture of clay,

silt and sand, but there are also some areas of mud and

some spots of hard bottom.

13(ng = I: | X,- -,’D,--) = const ntP X,- - |C.-- : Ic)Zk(’D,--,.J 1 .J J J
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The third data set (Set 3') was recorded in an area located

around Nidingen on the west coast of Sweden. The area

covers different seabed types and will in the near future be

supplied with ground examination.

A ping covers alsector of 150° or about 7.5 timesthe

depth, and the sampling rate is about 6:7 samples/meter.

A ping is divided into 60 beams, each covering 25°. In

this paper. a pixel corresponds to a feature vector which is

extracted from sonar data. The data come from a region

covered by several neighboring beams (beam no 2 - 4, beam

no 5 - 24, beam no 37 - 56 or beam no 57-59) from each of

20 consecutive pings.

For training of the classifiers; we used pixels from Set

1. The training set consisted of 80, 84, 44, 72, and 84
pixels from Seabed type 1,2, 3, 4, and 5, respectively. The
classifiers were tested on Set 2 and Set 3.

In the following, two seabed types corresponding to two

consecutive numbers will be denoted as adjacent classes.

This is reasonable because such classes are similar com-

pared to other pairs of classes in the training set.

3.2 Comparison of the classification methods

For the classifiers based on the multivariate normal dis-

tribution, noncontextual (NNC) and contextual (NC), we

have used the outlier criterion of s = 0.01. This implied

that 300 of a total of 4387 pixels from Set 2 and 460 of a

total of 17056 pixels from Set 3 were declared as outliers.

From Table 1 we see that the normal distribution non-

contextual classifier (NNC) and the k-NN classifier gave

similar results. For both data sets, more than 80% (ex-

cluding outliers) of the pixels were assigned to the same

class, while almost all pixels were classified to the same

or an adjacent class. As can be seen from Table 2, also

the NNC-classifier and the NC-classifier gave very similar

results. Therefore, we have only visualized theresults of

the NNC-classifier. -

 

     

 

_ . Set 2 . Set 3

Same 80.28 % 81.06 % .
Total (exclusive outliers) 4087 16596

 

Table 1: Comparison of the normal distribution noncon-

textuai classifier (NNC) and the k-NN classifier. The table

shows the number ofpixels assigned to the same class and

to the same or an adjacent class -

Classification plots in UTM coordinates are shown in

Figure l and Figure 2.

To a large extent. there is consistency between multiple
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  —Same class 84.46 % 89.62 %

Table 2: Comparison of the noncontextual (NNC) and the
contextual (NC) classifiers. 77te numbers show how many

pixels which were assigned to the same and the same or an
adjacent class

     

 

~ Seabed type]
- Seabed type 2

- Seabed type 3
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SI” 60 35 70 5.75

Figure 1: Classification of a subset of Set '1. Most of the

pixels were assigned to Seabed type 2 or Seabed type 3.
A few pixels were classified as Seabed type 1 or Seabed

type 4.

passes over the same area. For set 2. where some bot-
tom samples were available, the results were in reasonable
accordance with the ground truth. Various seabeds consist-

ing of clay, silt, sand and gravel were classified as Seabed
type 2 or Seabed type 3, while a region consisting of mud
was classified as Seabed type 5.

3.3 Detection of outliers

In order to investigate the powerfulness of the outlier
detection procedure. we have trained the NNC—classifier
on training sets, from where one of the classes has been
excluded. The results are given in Table 3. When a class
was removed, many pixels assigned to that class were as-
signed to an adjacent class. However, pixels of Seabed
type I, Seabed type 2, and Seabed type 5 are frequently
declared as unknown when these types are not present in

Proc. |.O.A. Vol. 15 Part 2 (1993)

419 

Figure 2: Classification of a subset of Set 2. 'The pi

were assigned to Seabed type 1 or Seabed type 2.

' the training set.

Seabed Set2 Set 3

m
273 41.2 %
1267 28.4 %

  
 

Table 3: The ability to detect regions of unknown sea
type. The second and thefourth column contain the-nun.
ofpixels assigned to the difierent classes when the trait

set consisted of allfive classes, forSet 2 and Set 3, res]
tively. The numbers in thefirst and the. third column are
corresponding'percentages ofpixels which were dealt
as outliers when the class corresponding to the row
excludedfrom the training set.‘ »

y c

3.4 Classification of mixels

We have also investigated classification which alll
each pixel to be classified as a mixture of two diffe

classes. The following mixtures have-been considered:

l. Seabed type 1 and Seabed type 2

2. Seabed type 2 and Seabed type 3
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3. Seabed type 3 and Seabed type 4-

4. Seabed type 4 and Seabed type 5

This corresponds to allowing mixtures between a class
and the adjacent classes. Overall, the mixel model gives

similar results compared to the standard normal model.
However, some. transitions between regions of different
seabed types are smoother. The results are best visualized

using colors, and therefore, they are not shown in this paper.

4 Discussion

We have investigated the performance of the the k-NN

classifier and classifiers based on the multivariate normal

distribution for the purpose of seabed classification. The

methods gave similar results when classifying the available
data sets into five different seabed types.

The degree of consistency when classifying multiple

passes over the same area was high. The results were in

reasonable accordance with ground truth. Consequently,
it is possible to differentiate between seabeds of various
sediment types. However, the degree of discrimination is
not known because precise ground truth over large areas

has not been available for the test sets.

Wehave observed that the gain of using contextual clas-
sification‘ compared to noncontextual'methods.is not sig-

nificant. This is probably due to the fact that the pixels are
computed froma large number ofbackscauer values and an
averaging ofneighboring data has taken place in the feature

extraction step.

If we should select either the k-NNcIassifier‘or a classi-
fier based on the multivariate normal distribution, we would
select the latter. This is because the normality a$sumption
yields a more powerful outlier procedure. ' We'have demon-
strated the usefulness of this proCedu're by' detecting seabed
of Unknown type when excluding one of the classes from

the training set. In the case of normality, we have also in-
vesti gated a method for mixel classification which provides
a more nuanced classification.‘ ‘

For a more accurate characterization, in terms‘of quan-
titative physical properties of the seabed, more research

is required, and a mathematical seafloor scattering model
should be established. Nevertheless the presented methods
can provide broad guidance. Therefore, we conclude that
the methods can be used in a prototype system for seabed
characterization.
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