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Abstract

The development of reliable methods for auromatic
seabed classification enjoys widespread interest at the
present time, In this paper, statistical methods for seabed
classification from backscatter sonar data are investigated.
The atm of classification is 1o divide the sea bottom into
smaller regions and ass:gn each region to one of several
sediment types.

Statistical classification from raw daia consists of two
Steps; extracting a vector of feature components from raw
sonar data for each region, and assigning for each feature
vector a class . In this study, raw backscatter data from the
Simrad EM 1000 Multibeam Echo Sounder are used.

Several combinations of a total of 50 different features
are examined systematically with respect to performance
of classification. The features are based on the backscaiter
strength, the backscatter probability density function, the
speciral distribution, and texture.

We consider classification rules which are derived from
the Bayes decision rule, and involve probability models of
the fearures, The attention is focused on the k-Nearest-
Neighbor classifier and a classifier based on the multivari-
ate normal distribution. The results show that it is possible
fo differentiate between seabeds of various sediment types.

1 Introduction

The present work is a part of a project which started in
December 1990 with the aim of developing methods for
automatic seabed characterization. Participating compa-
nies are Simrad Subsea A/S, Norwegian Computing Center
(NR), and SINTEF SI (former Center for Industrial Re-
search (81)). From June 1992, the project was merged with
the ESMAC project.

In this paper, we concentrate on statistical methods for
classification of feature vectors extracted from backscatter

sonar data. Asistruein most fields that deal with measuring
and interpreting physical events, pfobability considerations
become important in seabed characterization because of the
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randomness under which data are generated. Statistical pat-
tern recognition techniques have prev10usly been apptied
to side scan sonar data [2].

The performance of a classifier depends highly oa the
features which are used. In [9], more than 50 different
methods for feature extraction from sonar data were eval-
vated for this project. From the examination we know
that at least 20 of the features examined may be used
in seabed classification. However, only a small subset
of features should be used simultaneously. Including too
many features in the classification (using a feature vector
with a high dimension compared to the number of train-
ing samples) results in high error rates for the clagsifier,
This is due to a well-known phenomenon in statistics the

“curse of dimensionality” [8). Badsed on the prewous re<
sults [9] we have only examined classifiers using the tiree
features: 0.8 Quantile, Pace Dy,, and GLCM Conirast,
where 0.8 Quantile is the 0.8th quantile of the vector of
backscatter values from an area of the seabed, Pace Dy, is
a feature related to the spectral distribution of the backscat-
ter signal, and GLCM Conirast is a measure related to the
spatial co-occurence matrix of the backscatter values. For
more details on these features, see [9] and the references
given in that paper.

The classification methods of- this paper are based on
supervised learning, that is, preliminary knowledge about
the classes is required. A set of feature vectors or pixels
from each seabed type to be classified is o be collected and
separated into a design set, on which the classifiers are to
be trained. Due to the fact that there is & large number of
nuances of seabed types, one cannot expect that all possnble
nuances are represented in the training set. Thus assign-
ment of a pixel to one of the seabed types in the training
set does not necessarily mean that the area corresponding
to the pixel is of that type. Instead the classification of a
pixel should be interpreted as the seabed type which is most
similar to the seabed of that area.

In section 2, we describe classifiers based on the mul-
tivariate normal distribution and the k-Nearest-Neighbor
classifier. Both noncontextual and contextual methods are
considered. We also present procedures for detection of
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outliers and classification of pikels as a mixture of two dif-
ferent classes. In section 3, we describe the data and the
results. A discussion of the results and comments o the
methods are given in section 4,

The results show that it is possible to differentiate be-
tween seabeds of various sediment types. However, the de-
gree of discrimination is not known because precise ground
truth over large areas has not been available for the test sets.
Nevertheless the classification results can provide broad
guidance. In addition, our methods show a high degree
of consistency when classifying multiple passes over the
same area. We conclude that the methods can be used in a
prototype system for seabed characterization, .

2 (lassification rules
2.1 Traditional noncontextual classification

In noncontextual classification 113, each pixel is classi-
fied on the basis of the data for only that pixel. The methods
of this paper are based on the Bayes classification theory
[4). Thus each pixel belongs to one of K classes with prior
probabilities, 7y, ..., mx. Pixels or feature vectors from
class & are distributed according to the density fi. The
Bayes decision rule [4], assigns to a pixel class & where &
maximizes P(C = k|X), and
el X)

Yo mAY)
is the posterior probability of class & given the feature
vector X.

In this section, we assume that the class densities are
multivariate normal. Thus

P(C = k|X) =

fel(z) = (2m) 4 (det(Tp))~F e HE—mY 5 mmme)

where d is the dimension of the feature vector space, iy is
the mean vector, I; is the covariance matrix, and ’ denotes
transpose. The parameters y, and X, are unknown and will
be replaced by estimates in computation of P{C = k|.X).

Training of the classifier consists of estimating ziz and Zy
fork=1,..., K. Let Xl(k),...,XRfk) be feature vectors
which are known to be of class k. The parameters are
estimated by jix and £ where
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Thus the training procedure is very simple because there
are explicit formulas for the estimates.
Classification of the unknown feature vectors is now a

" simple task. It can be shown [4] that the ¢lassification rule

becomes: assign to a pixel class &£ where & minimizes
In(det(£4)) + (X — fu) 71X — fue).

Itis important to know to which extent one can trust the
classification results. If the pixel is assigned to class k, a
reasonable measure of uncertainty is the estimated posterior
probability of class &, P(C = k|A).

2.2 k-NN classification

" A traditional non-parametric classifier is the k-Nearest
Neighbor (k-NN} classifier [4]. As one wouid expect from
the name, this ruleclassifies pixel X by assigning it the label
most frequently represented among the & nearest samples
from a training set {with respect to e.g. Euclidian distance).
In other words,.a decision is made by examining the labels
on the k nearest neighbors and taking a vote. The k-NN
rule is related to the Bayes decision rule [7].

The classifier is based on the Euclidian distance between
the samples. The Euclidian distance is not invariant to the
scaling of the features. To combine features on different
scales, a normalization of each feature is required to assure
zero mean and unit variance for each feature. The only
parameter in the mode! is k. Preliminary experiments have
shown that £ = 5 is the best choice for our test data.
Therefore, £ = 5 is used in the following experiments.

2.3 Classification based on mixels

In statistical image classification, each pixel is classified
t0 one of the classes in the training set. Often, however, this
is not an adequate model of reality — the signals detected
in one pixel may be derived from two or more different
classes. This situation arises in two different settings.

+ In the border zone between regions corresponding to
different classes,

‘» When the spatial resolution is lower than the size of
some of the objects in the image.

Both of these settings are found in seafloor classification
based on EM 1000 data. Bottom samples indicate that the
seafloor model should allow mixtures of different sediment
types, and not just a number of predefined distinct classes.
Failure to take the presence of mixed pixels into account
may lead to misclassification.

In this section, we present a model for statistical image
classification, which allows each pixel to be classified as
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a mixture of twe different classes. We use the term mixel
to denote a pixel consisting of two different classes. The
classes which are atllowed to form mixtures must be speci-
fied by the user.

The model for mixture classification In traditional sta-
tistical classification, f{x) represents the class-conditional
probability density of the feature vector z. For the mixture
model, let fi i(z) be the density for feature vector z. fi
is modetled as a mixwure of two densities, fi and f;:

_f;,,;(a:) = afk(m) + (1 - a)f:(a:),

where a is the mixture coefficient (0 < ¢ < 1). For
seafloor classification, fi is assumed to be multivariate nor-
mal. The class-dependent parameters for the multivariate
pormal distribution (jix and £;) are estimated from train-
ing data. Traditional statistical classification assigns a pixel
into the class that maximizes fi(X). For a model involv-
ing mixtures, the mixture coefficient a must be estimated
for each pixel for each two-class mixture $0 as t0 maximize
fi{X). If e = 1, then the pixel consists of only class £,
and if a = 0, the pixel consists of only class { (0 < a < I}.
The set of allowed mixtures is (o be user-specified.

2.4 Detecting outliers

Occasionally, the preprocessing machinery may havein-
cluded “alien objects” and a feature vector may have been
incorrectly evaluated, etc. Thus there is a need for a pro-
cedure committed to the detection of “incredible vectors™,
thereby avoiding incorrect forced classification.

Omne way in which to formalize the problem is to test the
hypothesis

Ho: f€ {f]:-")ff\'}l

where f denotes the density from which the observed can-
didate vector X is drawn, and fi, ..., fx are the densities
of the classes we want to assign the pixels [7]. If Hp is
rejected, X is defined as outlier.

If we assume that f belongs to a set of multivariate
normal densities where the covariance matrix is restricted
to range over z set of positive definite symmetric matrices
where the minimum of the determinant is nonzero, it can
be shown [7] that the likelihood ratio test [1] becomes:
Declare X as outlier if

F(X) < (2r) Fdet(Ey, ) te 1M k=1, K.

Here ¢ is the level of significance of the test, d is the dimen-
sion of the feature vector SPace, 4.1 —. 18 the 100(1 —¢) -th
percentile of the chi-square distribution with d degrees
of freedom, and ko is the class with largest det(£;). 1f
¢ = 0.01, for example, in the long run 1% (or less) of the
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pixels belonging to one of the classes I,..., K, will be
wrongly declared as outliers. )

It is also possible to coastruct outlier tests without any
parametric assumptions on the class densities [7]. One may
define X to be an outlier if all K Mahalanobis distances
are sufficiently large,

k=1,.. K.

ymey

~ | R

(X = ) E7' (X = ) >

However, this and related procedures yield very mild
bounds compared to the method based on multivariate nor-
mal distribution and are therefore less powerful.

2.5 - Contextual classification

In contextual classification ([3]. [5], [6], [10], [111} the
classification rule is based on a stochastic model for the
behavior of the classes in the scene and the behavior of
the feature vectors given the underlying classes. For the
classification of a pixel, the feature vectors of neighboring
pixels are taken into account. Then a better classification
should be obtained. The reason for this is that the contex-
tual methods utilizecorrelation between neighboring pixels
wheras the noncontextual methods overlook it.

As a contextual model, we use Haslett’s [6] non-
iterative model. To explain the model, we need to define
some notation. Let the M x N image consist of M N
pixels or feature vectors X,,,..., Xpm n, where X;; =
(X ;(1), ..., X:i ;(d)), and dis the number of features. The
scene consists of K classes, £ € {l, K}. The class of
pixel (4, j) is denoted by C;;. Let P(X(4,7) | Cij = &)
denote the conditional probability density of X;; given
Ci;j = k. Define the neighborhood of pixel (7,7) as
DiJ' = {(1’ - llJ)I(IIJ - l),(! + 1)])!(111 + I)} The
a posteriori probabilities can be written as

P(Cj = k| X;5,Dyj) x me P(Xy ;5 | Ciy = k)Ri(Dyj),

where the term R (D;;) represents the contextual infor-
mation given by ' '

Ri(Dy) = ) [g(abic,e | k)

a,b.c.e

M Xi5-1, Xicry Xijo1, Xigj | Xij. k,a,b,c,e) ]

Here, g(a, b,c,e | k) is the probahility of a particular
configuration (a, b, ¢, €) of classes in the neighborhood of
pixel {, j), given that pixel (,) is labeled class &, and
h(-) is the joint probability density of the feature vectors
given the feature vector X; ; and the classes of the neigh-
boring pixels. We will assume conditional independence
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between the neighboring feature vectors, a situation where
h is reduced to be simply the-preduct of the correSpondlng
densities. In Haslett’s model, : o

g(a,b,c, e I k) == P(C{lj_] =a I C,'j = k) .
P(Cic1; =% |Ci; = &) -
PCijpr=c|Cij = k)P(Ciq1j=¢|Cij = k).

Then

P(C,’j =k | X,'IJ','D,'J') = const 'JTkP(X,'IJ' | C,'j = k‘)Zk(D

where

Zi(Dis) = Tk(x-',j—1)Tk(Xi—l.j)Tk(Xf,j+1)Tk(Xm.j).s

K
Te(Xij) = D, P(Cojr = m| Cyj = k)P(Xej | Cij = B),
and ,

i’j’ €Dy;.
This model reduces to the usual noncontextual maximum
likelihood modél if the transition probabilities P{Ci;: =
™m |'C,‘j = k‘) are equal (P(C{ljl =m | C,'J’ = k) =1/K).
Then, the contextual factor, Zg, is 1. The largest contextual
effect is achieved when P(C;rj» = m | C;; = k) = 1,
m = k, and 0 gtherwise. We use the default value of the
transition probabilities, P{Cy;e = m | (5 = &) = 0.9
when m = &, and equal probabilities are used elsewhere.

3 Data and Reeul_ts
3.1 Description of data sets

The data used in this project were recorded by a Simrad
EM 1000 sonar. Three series of data were available,

The first set (Set 1) was recorded at ditferent locations
in Oslofjorden. By examination of the data we selected
five homogeneous regions of various types. These regions
define five classes: Seabed type 1, Seabed itype 2, Seabed
type 3, Seabed type 4, and Seabed type 5, where Seabed
type 1 is the hardest and Seabed type 5 is the softest, The
classes may correspond to rock, sand, sift, clay, and mud,
respectively, but we stress that this is not confirmed. -

The second data set (Set 2) covers a cruise from Horten,
around Bast@ and up to Mglen in Oslofjorden. This crise
was supplied by ground examination at ten locations along
the route. The seabed consists mainly of a mixture of clay,
silt and sand, but there are also some areas of mud and
some spots of hard bottom.
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The third data set (Set 3) was recorded in an area located
around Nidingen on the west coast of Sweden. The area
covers different seabed types and will in the near future be
supplied with ground examination,

A ping covers a-sector of 150° or about 7.5 times.the
depth, and the sampling rate is about 6-7 samples/meter.
A ping is divided into 60 beams, each covering 2.5%. In
this paper, a pixel corresponds to a feature vector which is
extracted from sonar data. The data come from a region
covered by several neighboring beams (beam no 2 - 4, heam
no 5 - 24, beam no 37 - 56 or beam no 57-59) from each of
20 consecutive pings.

For training of the classifiers, we used pixels from Set
1. The training sei consisted of 30, 84, 44, 72, and 84
pixels from Seabed type 1, 2, 3,4, and 5, respectively. The
classifiers were tested on Set 2 and Set 3.

In the following, two seabed types corresponding 1o two
consecutive numbers will be denoted as adjacent classes.
This is reasonable because such classes are similar com-
pared to other pairs of ctasses in the training setL.

3.2 Comparison of the classification methods

For the classifiers based on the multivariate normal dis-
tribution, noncontextual (NNC) and contextual {(NC), we
have used the ouilier criterion of ¢ = 0.0, This implied
that 300 of a total of 4387 pixels from Set 2 and 460 of a
total of 17056 pixels from Set 3 were declared as outliers,

From Table ! we see that the normal distribution non-
contextual classifier (NNC) and the k-NN classifier gave
similar results. For both data sets, more than 80% (ex-
cluding outliers) of the pixels were assigned 10 the same
class, while almost all pixels were classified to the same
or an adjacent class. As can be seen from Jable 2, also
the NNC-classifier and the NC-classifier gave very similar
results, Therefore, we have only visualized the results of
the NNC-classifier. -

) . Set2 . Set3
Same 8028 % | 81.06 %
Same or adjacent class 97.72% | 99.73%. |,
Totad (exclusive outliers) 4087 16596

Table 1: Comparison of the normal distribution noncon-
textual classifier (NNC) and the k-NN clussifier. The tuble
shows the number of pixels assigned to the same cluss and
to the same or an adjacent class -

Classification plots in UTM coordinates are shown in
Figure [ and Figure 2,
To a large extent, there is consistency between multiple

Proc. |.O.A. Val. 15'Part 2'(1893)
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Set2 Set 3
Same class 8446 % | 89.62 %
Same or adjacent class 98.75% | 99.97 %
Total (exclusive outliers) 4087 16596

Table 2: Comparison of the noncontextual (NNC) and the
contextual (NC) classifiers. The numbers show how many
pixels which were assigned to the same and the same or an
adjacent class
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Figure 1: Classification of a subset of Set 1. Most of the
Ppixels were assigned to Seabed type 2 or Seabed type 3.
A few pixels were classified as Seabed type 1 or Seabed
rype 4.

passes over the same area. For set 2, where some bot-
tom samples were available, the results were in reasonable
accordance with the ground truth. Various seabeds consist-
ing of clay, silt, sand and gravel were classified as Seabed
type 2 or Seabed type 3, while a region consisting of mud
was classified as Seabed type 5. :

3.3 Detection of outliers

In order 10 investigate the powerfulness of the outlier
detection procedure, we have trained the NNC-classitier
on training sets, from where one of the classes has been
excluded. The results are given in Table 3. When a class
was removed, many pixels assigned to that class were as-
signed to an adjacent class. However, pixels of Seabed
type I, Seabed type 2, and Seabed type 5 are frequently
declared as unknown when these types are not present in
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Figure 2 CIass:ﬁcatiah of a subsel of Set 2. ._T?:e pi
were assigned to Seabed type 1 or Seabed type 2.

- the training set.
Seabed Set2 Set 3
type -Outlier Total | Outlier Total
I 363% 273 | 412% 7663
2 40.6% 1267} 284% 5354} .
3 127% 1358 | 11.7% 2146 |
4 58% 445 16% 1394
5 82.1% 744 | 41.0% 39

Table 3: The ability to detect regions of unknown sea .
type. The second and the fourth column containthe nun.
of pixels assigned to the different classes when the trais
set consisted of all five classes, for.Set 2 and Set 3, res;
tively. The numbers in the first and the.third column are
corresponding percentages of pixels which were decle
as outliers when the class correspondmg to the row
excluded from the training set.

34 Classification of mixels
We have also investiéated classification which all:

each pixel to be classified as a mixture of two diffe
classes. The following mixtures have been considered:

1. Seabed type | and Seabed type 2
2. Seabed iype 2 and Seabed type 3
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3. Seabed type 3 and Seabed type 4.
4. Seabed type 4 and Seahed type 5

This corresponds to allowing mixtures between a class
and the adjacent classes. Overall, the mixel model gives
similar results compared to the standard normal model.
However, some. transitions between regions of different
seahed types are smoother. The results are best visualized
using colors, and therefore, they are not shown in this paper.

4 Discusslion

We have investigated the performance of the the k-NN
classifier and classifiers based on the multivariate normal
distribution for the purpose of seabed classification. The
methods gave similar results when classifying the available
data sets into five different seabed types.

The degree of consistency when classifying multiple
passes over the same area was high. The results were in
reasonable accordance with ground truth. Consequently,
it is possible to differentiate between seabeds of various
sediment types. However, the degree of discrimination is
not known because precise ground truth over large areas
has not been available for the test sets.

We have observed that the gain of using contextual clas-
sification’ compared to noncontextual' methods. is not sig-
nificant. This is probably due to the fact that the pixels are
computed from a large number of backscatter values and an
averaging of neighboring data has taken place in the feature
extraction step.

If we should select either the k-NN-classifier'or a classi-
fier based on the multivariate normal distribution, we would
select the latter. This is because the normality assumption
yields a more powetful outlier procedure. We have demon-
strated the usefulness of this procedure by detecting seabed
of unknown type when excluding one of the classes from
the training set. In the case of normality, we have also in-
vestigated a method for mixel classification which provides
a more nuanced classification.’ '

For a more accurate characterization, in terms of quan-
titative physical properties of the seabed, more research
is required, and a mathematical seafloor scattering model
should be established. Nevertheless the presented methods
can provide broad guidance. Therefore, we conclude that
the methods can be used in a prototype system for seabed
characterization.
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