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Introduction

In analysis of the structural dynamics of a ship as a free

free beam, it is common practice to employ "strip theory". This

accounts for energy transfer between a vibrating ship and surround-

ing water by first assuming the flow past hull cross-sections to be

filo-dimensional, hence obtaining an added mass corresponding to the

section. The added mass of every section is then modified by a

reduction factor to take account of the three—dimensionality of the

flow. This factor Jr is associated with an assumed rth vibration, .

mode, and it is based on the three-dimensional flow around a

vibrating spheroid of the same length/breadth ratio as the ship.

This paper presents a modal analysis for prolate spheroids, and

describes the relation between Jr and the mode shape.

Clearly the modes depend upon the degree of material non-

uniformity of the spheroid. Previous investigations [l-h] have

given results for mode shapes approximating the behaviour of

spheroids only of uniform density and elasticity, and have neglected

the influence of added stiffness due to buoyancy effects on floating

bodies. The latter might lead to significant distortion in the

lowest modes in the vertical plane (conventionally termed heave and

pitch) of relatively flexible ships such as Great Lakers; but the

phenomenon appears to have been disregarded until recently [5,6].

Uniform and non-uniform spheroids, floating and submerged,

are analysed here by the finite element method, and results are

compared with those of previous analyses . A consistent added mass

matrix for this element is derived from the, exact fluidpotential

theory, and a consistent added stiffness matrix is obtained for

buoyancy forces .

Finite element mass and stiffness matrices

The derivation of these matrices is in principle similar to

that given by Gallagher and Lee [7]; however the class of uniform

elements considered by those authors does not include the spheroidal

element.

The beam is divided into N elements by planes perpendicular

to its axis. It is assumed that the vertical displacement 14 within

the nth beam element may be expressed in terms of the displacements

and rotations at both ends. The assumed displacement function is‘

   



 

exact for a uniform beam in static equilibrium under the action of
end shears and moments. This leads to element mass and stiffness
matrices expressed as integrals over the element length, and it is
relatively straightforward to perform these integrations in closed
form for each spheroidal element. The overall mass and stiffness
matrices, M and g respectively, for the assembly of elements that
comprise the total spheroid may then be found.

Added mass and added stiffness matrices

 

In evaluating the added mass matrix it is assumed that the
flow is incompressible and inviscid. A velocity potential ¢ may
then be used, satisfying a Neumann boundary condition on the surface
S of the spheroid. The appropriate solution to Laplace's equation
for a deeply submerged spheroid undergoing flexural vibrations at
frequency w is: as

= l l '4: X cpr (n)Up (v)cos e Sln wt

P=1

using a curvilinear coordinate system (u,6,v) on 5. TP! and Up1
are respectively associated Legendre functions of the first and
second kind. The constants cp are obtained from the boundary con-
dition on 8, using the orthogonality of the functions Tpl.

The kinetic energy Tf of the ideal fluid of density of
surrounding the vibrating body is given by

a
Tr = ’z‘pfi‘bfids

S

In order to use this expression to obtain a consistent added mass
matrix 95, for the spheroid, the series form of ¢ must be truncated at
some term p=P, where P is finite but as large as desired to obtain
satisfactory convergence. Then using the assumed displacement of
the surface of the nth element, the fluid kinetic enery may be
written in the form

Tr = Ma's;
where q is the vector of all nodal generalised displacements.

Evaluation of m is achieved through useof certain recurrence
relations for associated Legendre functions. Each term involves
the integral of a polynomial, which may in theory be found in closed
form. Because of the large number of terms in each polynomial when

P is large, however, it is convenient to compute g by Gaussian quad-
rature. The sixteen point quadrature used here is exact for poly--
nomials up to degree 31, hence up toterms given by P=29. The p

resulting matrix Q is consistent with the mass matrix 1‘4, and the two
may be added to yield the "virtual" mass matrix for a submerged
spheroid. For a floating spheroid the added mass matrix is 513, for
the frequency range of interest here in which wave generation at the
free surface may be neglected.

Derivation of the added stiffness matrix for a floating
spheroid requires consideration of hydrostatic restoring forces,
associated with displacement from a position of equilibrium with the
axis of the spheroid lying in the free surface. .At a section where
the waterline beam is 2y, the work done in a displacement w is

i(w‘2)(2pfy), and for the nth element the work done is the integral
of this quantity over the element length. This leads to the added

stiffness matrix for the spheroidal element. The integrals in this
matrix may not however be evaluated in closed form, and sixteen point

  



 

Gaussian quadrature is again used. Thus the overall added stiffness

matrix )5 for the assembly of elements may be found, and a "virtual"

stiffness matrix obtained for a floating spheroid.

Eigenvalue analysis and results

Free flexural vibrations of the spheroid are governed by the

equations (E+-§)q _ “2%,,2)‘:1 = O

From these the natural frequencies and characteristic modes are

found, and reduction factors Jr" evaluated. (Jr“ is here defined as
the ratio of [kinetic energy of fluid in 3D motion for a mode shape

calculated assuming 3D motion] to [kinetic energy of fluid in 21)

motion, for the same mode shape] .) The accuracy of an N element

idealisation and a hydrodynamic solution up to P terms is then inves-

tigated by convergence studies.

Some results for a deeply submerged spheroid are given in

Table I. From these it is concluded that an idealisation of four

equal length elements, with eight terms in the series of Legendre

functions, gives very accurate values up to the three node flexural

mode (i.e. r=2‘, r =-l and 2' =0 correspond to the rigid modes of a

deeply submerged body, heave and pitch respectively, and r =1 to the

two node flexural mode);

Table II and Fig. 1 give some of the results showing the in-

fluence of mode shape on Jr“, and illustrating distortion in the low-

est mode of floating non-uniform spheroids. Also shown are the

values of Jr obtained by Lockwood Taylor [2] using assumed modes

which approximate the characteristic modes of uniform spheroids.

The dimensions of the spheroids were selected to provide an analogy

with the gross dimensions of a large tanker or Great Laker. The two

values of elastic modulus were chosen to give two node natural fre-

quencies of the floating‘spheroid slightly higher and slightly lower

than those of a typical 200,000 ‘dwt tanker. The amount of distor-

tion in the so-called "rigid" mode is surprising. Both for the

spheroid and for a real ship this will depend significantly on the

distribution of mass. The latter also influences the natural fre-

quencies of the lowest modes of the floating spheroid, as indicated

in Table II‘.

Conclusions

Among the conclusions suggested by the results are the follow-

ing: (i) Three—dimensional reduction factors depend on characteristic

mode shapes which vary with structural properties and buoyancy;

accurate calculation of these factors for real ships is probably not

worthwhile, since it would be more profitable to perform a modal

analysis along the lines indicated here. (ii) The lowest mode of

action of a ship in the vertical plane may theoretically be pitch or

heave, depending on waterline and mass distribution. (iii) The low-

est two modes of relatively flexible ships, such as tankers and Great

Lakers, may entail significant distortion of the neutral axis.
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Table Iv——
Convergence study of 10 11 free-free spheroid deeply submerged

Elements(N_ Terms (P) (0111) (C 1 2

2 8 .29 .0225 82852
R 5
h 6
h 12
B 5
8 8~

28.9813 .82682

Table II
Frequencies 3154 3D reduction factors for 8 XI spheroids

c3:“18 :

0.0 5.87

 

  
   
    
   

   

        

  
   

    
   
   

 

  

28.9813 .82682
25.9813 .82882
28.9753 .82886
28. 97 53 .82886

  
  

   

  

 

     
   

  

 

   

  

      

    

    Frequenc i as

( cpm)

3D Lyggl‘w;
.' Jo . 525

reduction J1. L76“)
factorsl'. 1J2. L68”)

   

+Lackwoovtl Taylor factors [2] shown in parentheses

Spheroid major axis = 80111 case
Spheroid minor axis = 10m b

of = 1000 Its/ma

 

Figure 1 Mode -1 for submerged

and floating spheroids


