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High-order computational aeroacoustic simulations of complex engineering problems may require
the effects of moving boundaries to be resolved. This may be achieved by the immersed bound-
ary method, the over-set grid method, or by a sliding mesh interface. The computational cost
associated with a sliding mesh interface is mainly due to the continuous re-evaluation of the in-
terpolation scheme coefficients. These coefficients are evaluated by inverting a non-sparse square
matrix, with a size that is based on the interpolation stencil. In this paper the ongoing development
of a sliding mesh interface strategy is described that aims to remove the need for re-evaluating the
interpolation coefficients. This is achieved by combining patched and sliding interfaces, and the
accuracy and the computational cost of this method are discussed.
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Introduction

High-resolution calculations of compressible fluid flows require low dispersion and low dissipa-
tion numerical methods in order to accurately capture the generation, propagation and interactions
between the acoustic, vorticity, and entropy waves. If the computational domain is built as block-
structured grids then these requirements can be achieved by using high-order and optimized finite
differencing schemes. The effect of boundary motion is an additional requirement, for example for
simulations of turbo-machinery, and this can be resolved by a deforming mesh [1, 2], sliding mesh
[3, 4], or an immersed boundary method [5].

An essential element to each of these methods is the interpolation of data, which must be accurate
enough to ensure that the transfer of information is not affected by dissipation or dispersion errors.
This can be achieved by using large-stencil, high-order, and wave-number optimized interpolation
schemes [6]. Therefore, the overhead computational cost of a high-order moving-boundary simulation
may be influenced by the size of interpolation stencil, and the implementation complexity that can lead
to a loss in computational efficiency on larger scale computations.

Typically, interpolation schemes have been directly applied to the primitive variables. Therefore,
a two-dimensional sliding interface requires a two-dimensional interpolation method. However, if
the sliding interface is evaluated in terms of the characteristic fluxes propagating normal to the in-
terface, then the interpolation required for a two-dimensional domain can be performed using a one-
dimensional interpolation scheme [3]. Characteristic methods are also useful to provide high-order
solutions on block interfaces with a grid discontinuity [7], non-reflective boundary conditions [8, 9],
and zonal grid refinement [10, 11]. However, the characteristic method is known to perform less ac-
curately when the flux through the interface is zero [12]. In these situations, a central filtering scheme
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that interpolates the primitive variables beyond the block edge can ensure a smooth and continuous
solution. This manuscript outlines the development a new sliding mesh strategy that aims to reduce
the computational cost and complexity of the method, to ensure a method that is applicable to parallel
flows, and to minimise the implementation complexity to maximise the computational efficiency for
large scale computations.
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Figure 1: An example of the interpolation scheme progression for a non-uniformly spaced sliding
interface.

The potential reductions in the computational cost for a sliding mesh method is outlined with the
aid of Figure 1. In Figure 1 the sliding interface is defined between blocks 1 and 2. The grid points
along each side of the interface are non-uniformly spaced. As block 2 translates at a mesh translation
velocity of Vm, the projection of the grid points of block 2 onto block 1 will change. The interface
condition on block 2 requires the data on block 1 at the projected points, and this information is
evaluated by an interpolation scheme. The interpolation scheme will vary across the interface, and it
will change with every time step, due to the non-uniformity of the grid points.

The number of calculations required to perform the sliding interface condition can be divided into
two parts. Firstly, the interface condition requires the interpolation schemes to be applied to every
point along the interface, and on both sides of the interface. Secondly, at every subsequent time
level, the grid point overlap will be different and require the re-evaluation of the interpolation scheme
coefficients. This re-evaluation requires the inversion of aNst×Nst non-spares matrix, whereNst+1
is the size of the interpolation stencil. Therefore, at every time step a total of 2NyNss interpolations
are required for the interface condition, where Ny is the number of grid points along the interface,
and Nss is the number of sub-iterations in the temporal scheme. Additionally 2NyNss inversions of
the non-spare matrix are required at every time step. The size of the interpolation stencil Nst must be
adequate to resolve the global order of accuracy, and the accuracy will also depend on the patch ratio.
For practical cases, a sliding interface on a stretched grid may encounter a range of patch ratios. Peers
et al. [10] showed that the grid convergence of interpolation schemes with Nst > 7 will diverge from
the order of the spatial scheme as the patch ratio diverges away from unity.

A sliding interface defined by a uniformly spaced grid, can reduce the number of interpolation
scheme revaluations from 2NyNss every time step, to a single calculation. The size of interpolation
stencil used along the sliding interface can also be reduced, as the patch ratio will be unit. For practical
cases, a secondary patch will be required that projects the flow information from the uniform space to
the curvilinear grids. Therefore, additional patched characteristic interfaces are required downstream
and upstream of the sliding mesh. However, these calculations are more straightforward and do not
require the inversion of a large matrix.

Numerical method

In this section the governing equations, and the characteristic interface conditions are outlined.
For simplicity, only key elements are presented. For a full description of these methods, the reader is
refered to original references for the characteristic [7], patched [10], and the sliding formulations [3].
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Governing equations

In the generalized coordinates, the Euler Equations can be expressed as:

∂Q̂

∂t
+
∂Ê

∂ξ
+
∂F̂

∂η
+
∂Ĝ

∂ζ
= 0, (1)

where conserved variables and the Euler fluxes are given by:

Q̂ = 1/J [ρ, ρu, ρv, ρw, ρeT ]T , J = 1/[xξ (yηzζ − yζzη) + xη (yζzξ − yξzζ) + xζ (yξzη − yηzξ)],
(2)

Ê = (ξxE + ξyF + ξzG) , E = [ρu, ρuu+ p, ρuv, ρuw, (ρeT + p)u],

F̂ = (ηxE + ηyF + ηzG) , F = [ρu, ρuv, ρvv + p, ρvw, (ρeT + p)v], (3)

Ĝ = (ζxE + ζyF + ζzG) , G = [ρu, ρuw, ρvw, ρww + p, (ρeT + p)w],

where ρ is the fluid density, (u, v, w) is the velocity, p is the pressure, the total energy density is
eT = p/ρ(γ − 1) + 1/2 (u2 + v2 + w2), and γ = cp/cv is the ratio of specific heats and taken as 1.4
for air.

Characteristic formulation

The governing equation can be cast in terms of characteristics along ξ as:

∂R

∂t
+ L = S, (4)

with

L = Λ
∂R

∂ξ
, ∂R = P−1∂Q, Λ

∂R

∂ξ
= P−1

(
ξx
∂E

∂ξ
+ ξy

∂F

∂ξ
+ ξz

∂G

∂ξ

)
,

S = −JP−1
[
∂F̂

∂η
+
∂Ĝ

∂ζ
+ E

∂

∂ξ

(
ξx
J

)
+ F

∂

∂ξ

(
ξy
J

)
+ G

∂

∂ξ

(
ξz
J

)]
. (5)

where, PΛP−1 is the flux Jacobian along ξ, and P and P−1 are the left and right eigenvectors of
the flux Jacobian. The flux derivatives along a block interface can be expressed as characteristic
fluxes through a surface defined by∇ξ = const. Based on this formulation, boundary conditions, and
interface conditions for both static and sliding interfaces can be defined.

Characteristic interface conditions

The condition that ∂R/∂t is continuous across the block interface is satisfied by upwinding the
charactersitc information according to its eigenvalue:

(L∗i )
L = LRi − SRi + SLi , if λLi = λRi < 0 (6)

(L∗i )
R = LLi − SLi + SRi , if λLi = λRi > 0 (7)

The extension of this method to non-conformal grids is achieved by interpolating the characteristic
fluxes and source terms across the non-conformal space [11, 10] by an interpolation scheme. Finally,
the extension of patched interfaces to a sliding interface additionally requires the characteristic fluxes
to be evaluated in a reference frame that follows the local block [3]. The latter, requires additional
flux corrections to account for the effect that the mesh translation has on the characteristic fluxes.
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Hybrid patched and sliding interface

The proposed sliding mesh strategy is illustrated in Figure 2, and is outlined as follows. Firstly
the sliding region is locally remeshed as a uniform grid and secondly, the transition from the uniform
grid to the curvilinear space is imposed by a patched interface condition. By this method, the number
of interpolation scheme re-evaluations is set to a single calculation, at every instance that the mesh is
translated.

patched interface

sliding interface

patched interface

curvilinear griduniform grid

mesh translation at Vm
static mesh

Figure 2: Schematic of the hybrid uniform sliding interface method.

As the mesh translates, the central points to the interpolation scheme will change with time. By
setting the mesh displacement to be some factor of the local grid spacing, the central points of the
interpolation scheme can be easily updated. This is achieved by setting the mesh translation Vm as:

Vm =
∆y

Nm∆t
, (8)

where ∆y is the uniform grid spacing, Nm is an integer number that specifies the number of time
steps required for the mesh to translate by ∆y, and ∆t is the time step size.

Results

Two benchmark problems are evaluated for the validation of the sliding interface method. The
first is an acoustic pulse propagating over a uniform base flow, and the second is an isentropic vortex
convecting across a uniform base flow. Results obtained by various hybrid sliding interfaces are
obtained and compared to a solution obtained by a fixed grid. The domain size for both cases is
0 < x < 4 meters, and 0 < y < 3 meters. The domain is divided into four evenly sized blocks
with a length of 1m and a height of 3m. The sliding interface is defined along x = 2 and the patched
interfaces are along lines at x = 1 and x = 3. The base flow for both cases is uniform and set to a
Mach number of M∞ = 0.5.

The Euler fluxes are evaluated by high-order spatial schemes [13], and the fluxes are corrected
along the patched and sliding interfaces by a characteristic method. The solution is advanced to the
next time level using high-order order Runge-Kutta method [14] with and time step set to ensure
CFL< 0.5. At the end of each time step, the solution is modified by a high-order filter [15] and the
primitive variables along the characteristic interfaces are treated using a 6th order explicit central filter
[16].
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Acoustic pulse across a sliding interface

A sinusoidal acoustic monopole forcing defined by Bailly and Juve [17] is placed near the centre
of the computational domain. The acoustic properties of the forcing are set to ε = 0.05, (x0, y0) =
(1.25, 1.5), ω = 15, α = ln(2)/0.01, according to the parameters defined in [17]. The instantaneous
pressure fields from three grids, with varying patch ratios, are illustrated in Figure 3. This figure also
includes close-up views of the patched interface region. Figure 4 illustrates the instantaneous pressure
field taken along a line at y = 2, and recorded at a non-dimensional time of t = 1.25. Several cases
with different patch ratios, and mesh translation speeds are shown, and the results show that there is
no discernible effect of the sliding interface or the patched interface on the acoustic pulse propagation.

(a) PR= 1.0 (b) PR= 1.2 (c) PR= 2.0

(d) PR= 1.0 closeup (e) PR= 1.2 closeup (f) PR= 2.0 closeup

Figure 3: Disturbance density field induced by an acoustic source, solved by grids of varying patch
ratios (PR), and at a constant mesh translation speed of Vm = 0.1. The contour levels range from
−3× 10−2 < ρ′ < 3× 10−2 across 10 levels.

Vortical wave across a sliding interface

The effects of the patched and sliding interfaces on the convection of an isentropic vortex are
studied in this section. The flow field with a two-dimensional vortex is defined by [18] as:

ψ =
ε

2π

√
exp [1− ((x− x0)2 + (y − y0)2) /L2], p = p∞ (ρ/ρ∞)γ (9)

ρ′ = ρ∞

[
1− γ − 1

2
ψ2

] 1
γ−1

, u′ =
y − y0
L

ψ, v′ = −x− x0
L

ψ, (10)

The instantaneous transverse velocity is shown in Figure 5 from three cases with different patch
ratios, and the transverse velocity profile taken along the centreline at a time of t = 3 along Figure 6
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Figure 4: Acoustic pressure distribution along y = 2 and 0 < x < 4 from grids with various patch
ratios (PR) and mesh translation speeds (Vm).

(a) t = 1 (b) t = 2 (c) t = 3

Figure 5: Disturbance transverse velocity field induced by vorticity convection, solved on a grid with
a patch ratio of (PR= 2), and at a mesh translation speed of Vm = 0.2. The contour levels range from
−1× 10−5 < ρ′ < 1× 10−5 across 10 levels.
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Figure 6: Transverse velocity distribution along the the vortex core streamline, from grids with various
patch ratios (PR) and mesh translation speeds (Vm).
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Computational cost

The computational time required to perform the acoustic pulse test case was measured for the
monopole benchmark case, using a patch ratio of 1. For this case the patched interface can be treated
as a one-to-one boundary, and the overhead computational costs from the sliding interface, the patched
interface, and the re-evaluation of interpolation coefficients, can be measured.

Configuration CPU time increase % Description

Sliding interface N/A No patched interface, no re-
evaluation, no ghost points

Hybrid interface 14% Patched and sliding inter-
faces, with 3, or 5 ghost
points

Sliding interface 14% Re-evaluation of interface
points only

Sliding interface 27% Re-evaluation of interface
points and 3 ghost points

Sliding interface 48% Re-evaluation of interface
points and 5 ghost points

Table 1: Computational run times of various sliding interface methods.

The results outlined in Table 1 shows that the re-evaluation of the interpolation scheme coefficients
(with N = 5), adds 13% to the simulation time. With the use of a central filter across the interfaces
regions, the ghost point data must be evaluated. Re-evaluation of the interpolation coefficients for
more ghost points add significantly greater computational cost. The results obtained here are for an
interpolation scheme with a stencil size of N = 5. However, if a larger stencil is used (to ensure
greater accuracy on more extreme patched grids), then the overhead cost of the re-evaluation can be
expected exceed the cost induced by the patched interfaces. Finally, the implementation simplicity
of a sliding interface on a parallel computation is more simple and straightforward on a uniformly
spaced grid.

Conclusion

An overview of the ongoing development of a sliding mesh strategy based on characteristic in-
terfaces is given in this paper. The method employed to resolve the effects of a moving boundary
uses high-order finite differencing and an interface condition that induces minimal errors to the hy-
drodynamic and acoustic disturbances in the computational domain. The method employed relies on
combining patched and sliding interface conditions that are formulated in terms of characteristics.
These conditions work well, unless the flow is parallel to the interface edge. Under such conditions, a
central filter with interpolated ghost points can be used to overcome the inaccuracies induced by the
interface condition.

The computational cost associated with the re-evaluation of interpolation scheme coefficients is
removed by employing a patched interface, and a sliding interface across a uniform grid. This has two
advantages. Firstly, it greatly simplifies the implementation procedure, and secondly, it can reduce
the computational cost for cases with interpolation schemes with N > 5, or cases that require ghost
point interpolation. The method has been verified under several configurations on two benchmark
problems, and the results demonstrate that the interface conditions, and the mesh translation, do not
induce any discernible errors to the solution.
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