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ABSTRACT

In this paper, a new technique for narrowband, linear equal spaced array proces—

sing is derived which is based on what is known as the Tbeplitz Approximation

Method (TAM) of stochastic system identification. The proposed algorithm provi

des high resolution signal finding capability and allows accurate separation of

directional components of received array data. The method is designed for an

arbitrary noise, multipath signal environment. That high resolution direction

finding (DE) estimation is important in many sensor systems such as passive

sonar, radar, communication, electronic surveillance measures (ESM), etc.

1. INTRODUCTION

Eigenstructure based methods for direction finding have recently been developed.

1hese methods utilize the decomposition of the array data correlation matrix,

employing either the signal subspace or the noise subspace basis obtained as

eigenvectors of this matrix. This approach is used in the "MUSIC" (Multiple

Signal Classification) algorithm of Schmidt (1979) and in the deseribed methods

by Bienvenu and Kopp (1980—1981), Owsley (1977), and Johnson and DeGraaf (1982).

1hese methods can be viewed as a generalization of a algorithm which uses only

the eigenvector associated with the smallest eigenvalue. This approach was pro-

posed first by Pisarenko (1973) and latter by Cantoni and Godara (1930).

These approaches have been examinedin the case where the ambient noise is spa—

tially white. A novel direction finding algorithm, based on a reduced order

Tbeplitz approximation of an estimated spatial covariance matrix, is proposed

in this paper. The estimated covariance matrix. in the case in which sources

are uncorrelated and statistically stationary, is Toeplitz. In a multipath en-

vironment, howeyer, the source paths are fully correlated, this covariance ma—

trix is no longer Toeplitz. TheToeplitz structure can be guaranteed by employ-

ing spatial smoothing, which destroys cross correlation between directional

components (l).In the TAM approach' the spatial data may be modeled as the

output of a self generating ARMA process with poles, corresponding to arrival

directions, on the unit circle. A state representation is estimated from a co-
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variance matrix low order approximate. The algorithm used to obtain this low

order matrix, which is based on the Singular Value Decomposition (SVD) of the

spatial data matrix, has low sensitivity to data perturbation.

2. MATHEMATICAL FORMUMATION

Consider a linear receiving array with L equally spaced elements and m direct

sources with a total of p paths, At the array, source wavefront propagation is

assumed planar and source energy is incident on the array a distinct angles

(6k,k = 1,..4p}. Thepropagation channel is homogeneous and the signals are

narrowband (1.e. source bandwidth is much smaller than the reciprocal of the

propagation time of the signal across the array). The received signal at the

ith sensor y1(t) is given by

P

yi(t) = kil ak exp(j(wkt - (i-l)2‘"(d/Msin9k + W] + ni(t] (1)

= xi(t) + ni(t)

Rewriting equation (1) in matrix notation, we obtain

Yit) = D S(t) + N(t)

Y(t) = (y (t) y (M:1 .---, L A

tsm = [51(t): 52(t),...,sp(t))

D =- (D61, D92“... nap)

Mt) = (mm, film):-

Therefore, the spatial covariance matrix R = E(Y(t)Y'(t)} is

2_ . =R—DRSD +01 Rs‘hfiq

   where denotes the complex conjugate transpose ; "t" denotes the simple

transpose : "E" stands for expectation, an ensemble average operator ; I is

LxL identity matrix ; R5 = E{S(t)s‘(t)} is the p x p path signal covariance ma-

trix ; and D is the L x p direction matrix, or a Vandermonde matrix, whose co—

lumns are the steering vectors of the impinging planar wavefronts. R is non-

negative definite (i.e.-eigenvalues of R are non—negative), and

2 2 _ 2
IlR-REIIE — AP+1+ AP+2 + + AL

In DF problems. all eigenstructure methods of estimating the direCtions-of-

arrival (DOA) {SK} are based on exploiting this structure of R. The eigenstruc-

ture methods_are based on straightforward exploitation of the two following pro-

86 Proc.l.0.A. VoIB Par13(1986)



  

Proceedings of The Institute of Acoustics

A NOVEL APPROACH FOR DIRECTION FINDING PROBLEMS

perties : P

(1) Since R5 = E Riv; V1 has rank 9. the minimal eigenvalue of R is 62 with
1:1

multiplicity L—p, i.e.

2
)‘PH — AP” — =- AL — o

(2) the eigenvectors corresponding to the minimal eigenvalue are orthogonal to

the columns of the Vandermonde matrix D.

In practice flue data covariance R is not given, but has to be estimated from

y(t) . A popular estimate of R is
'l'

E Ylth" (t) -
t=l

{a = (1m

The number of snapshots, 'I‘, needed for an adequate estimate of the covariance

matrix depends upon the signal-to-noise ratio at the array input and the desi-

, red accuracy of the DOA estimates. In the absense of noise, ’I‘ > p is required

in order to completely span the signal subspaces. In the presence of noise, it

has been shown by Brennan and Reed (1974) that ’1‘ must be at least L2.

Due to errors in 1;, its eigenvalues will be perturbed from their true values

and the true multiplicity of the minimal eigenvalue may notbe evident. A popu-

lar approach for determining the underlying eigenvalue multiplicity is an infor—

mation flaeoretic method based on the minimum description length (nor) criterion

proposed by wax and Kailath (1985) . The estimate of the number of sources p is

given by thevalue of k for which the following MDL function is minimized :
1 (m-k)'l‘

L F—T * 1 L - k ‘1
MDL(k) = - log H Al / m 2 A1 + FOL-k)ng T :

l=k+l 1=k+l

where )‘i are fine eigenvalues of R. The MDL criterion is known to yiE1d asympto-

tically consistent estimates.

Having obtained an estimate of p. the maximum likelihood estimate of 02 condi-

tioned on p is given by the average of the smallest L-p eigenvalues i.e.,

L.2 _
0 = (1/ ) E A

L'P i=p+l 1

3. wHERENT PATHS

Conventional eigenstructure methods are applicable only when the path signal

covariance matrix R, i non-singular. when son of the path signals are cohe-
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rent R, will besingular and properties (1) and (2) do not hold.

4. A SOLUTION BY SEAN AND KAILATH

Recently, Kailath et al. (1984) proposed a scheme which is based on the use of

spatial smoothing and can guarantee successful performance of the eigenstruo—

ture methods regardless of the coherence of the sources. This method has redu-

ced resolution capability (because of the shorter array) and inferior numerical

properties.

In this paper, we suggest a new kind of spatial smoothing technique which has

better resolution capability. we propose a state-space parameter estimation

procedure, instead of polynomial estimation, because it has better numerical

property.

5. STATE SPACE FORMULATION

Since the signals received by the array are assumed composed of sinusoids, such

a signal can be considered to be the output of a very special ARMA model.

Because the spatial covariance of x (defined as noise free measurement) has

rank p, x(kJ is a pth order Markov process with respect to spatial index k,.

and x(k) can be predicted from {x(k-l).x(k—2),...,x(k-p)). As indicated by

Kung et a1. (1983) (2) we can formulate a special state-space representation as

zk+1 = sz

fl =th
One choice of state 200 leads to

  

j(w:+¢) 3(Luc+¢)
Z = e 1 1 ,...,e m p

-jT -jT
F = diag e 1, e 2, ..., e P

   

 

  
           

 

   

 

  
 

(i) . )((U = a. . e
l 1

Any other choice is related to the representation expressed above as a simila-

h

rity (coordinate) transformation of F. The state transformation may not be uni-

que but the transfer function is (i.e. poles and zeroes do not change). There-

fore, after any coordinate transformation, the eigenvalues of F will always be

t
exp(-jii), i = l,..., p. We can also write X = (xl,x2,...,xL) as
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t

x =- h, hE‘, hF2,...,hFL_l z = 02

Therefore, R5 = GElezi}O'.

In system theory, 0 is called the observability matrix, and if all Ti's are

distinct, i.e. if the p paths do not overlap, the 9 columns of G are indepen-

dent. Moreover, if all paths are uncorrelated, E{le'l} is diagonal and stricly

positive definite. and RS has rank p. However, when the path signals are cohe-

rent, some of the ¢k variables are dependent, 5(212i} will be singular and Rs

ill have rank < p. In fact, RS will ngt_be Toeplitz and the spatial process X

will no longer be spatially stationary. Thus, the coherence of path signals

destroys both the Tbeplitz property and the p—rank property of ks. Clearly, if

RS is non—Toeplitz, the spatial correlation matrix R, pertaining to the obser-

ved signalvector, is also non-Toeplitz.

5.1 - Spatial Averaging

If we use spatial averages instead of time averages, then asymptotically we

will obtain a Tbeplitz matrix C that has the rank p.

If can be easily shown that

C(m) = thPh' m >, o

where

1 L

P = lim[:] 2 ZiZlf- = F?!"

L*W i=1

is a p x p state "covariance" matrix. Note that P is not an estimate of

s{zizi). since E{Zizi} is a function of i and spatial averaging destroys this

dependence.

Now, we formthe new Tbeplitz covariance matrix as following :

cto) c(-1) . . .1

C(1) cto) . . .

Using C(m) = thPh', we can easily verify the following factorization :
c=epe

Since 0 has only 9 columns, the rank of C must be < p. As stated earlier, 0\
and P are always full rank, thus C has rank p irrespective of the coherence of
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paths.

5 . 2 - Estimation

Numerous covariance matrix estimators exist in the literature. One very popular

choice is the unbiased estimator. when the array length is finite, an unbiased

estimate of C(m) is

[ 1 )L—m—l

Z x x_ I
(L_m) i=o

 

m=0,..., L-l

if the time series is composed of g-sinusoids, the covariance matrix C should

ideally be a Toeplitz matrix of rank p. However, because (L) is often relative-

ly small for practical arrays, this estimate may not he a good and the ideal

matrix characteristics may not be realized. The estimate may be improved by

using a pseudo—ensemble average ; a combined spatial and temporal average. It

is therefore suggested that the estimator,

1 T L-m-l

C(m) = til k; xkhi) fl+m(t)

can be used where t isthe temporel index.

5.3 - loeplitz Approximation Method (TAM)

The objective of the Tbeplitz approximation method is to retrieve a p—rank pro—

perty on an estimated covariance matrix C (via (SVD), and then to enforce the

structure of D, to obtain estimates F and h from the principal components. In

summaray, the two steps of the TAM approach (2,3) are :

Perform an SVD on C and arrange the singular values (Gk, k = 1,... L} in de—

creasing order. ‘I‘he SVD is .

_ :1 o v'1

c = UZV' = (.uluz]
0 ' £2 2

where the p x p diagonal matrix 21 contains the p largest singular values. A

p—rank approximant to C is = ultlvi, and the (minimal) approximation error in

the spectral norm is optimal.

In the presence of only white noise, though the singular vectors are unchanged,

the singular Values are affected. In fact all the singular values are increased

by the noise variance, so that the smallest singular value has to be substracted
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to compensated for the effect. with this, the p rank approximant to C is

. _ _ 2 2
ulzlvl, £1 — £1 0M 1, where 0M

ally equivalent to the Pisarenko's solution.

is the smallest singular value. This is actu-

lhe second step involves determining the model parameters. The observability-

type matrix is given by O = U121]2

2
Ideally, 0 would have the exact ohservability matrix structure {h h? h? ...}t

{hF hF2...}t = 0+. However, because of the approximation, nonand satisfy 6F

exact solution exists and we have to resort to a least-squares solution that

minimizes IIOF-0+IIF, where subscript F denotes the Frobenius norm and 9+ is

obtained by shifting 0 one row upwards with an added last row of zeros.

This leads to least-squares estimates of state-space parameters, as F = @101

(state transition matrix).

The eigenvalues of F = diaq(exp(—jT1},exp(-j‘r2), ..., exp(—j‘rp)) , give the di-

rections of the paths, since the eigenvalues are exp(-jTi) = exp(—j21(d/X)sinei)
N _

Also, because F = QFQ 1, the amplitude information can be estimated as

(i) [/2llh all .
where h is the first row of observability matrix 9. It is known that the obtai-

ned estimate of F is always stable.

Spgtial Spectrum

In general, the source energy, distributed as a function of angular direction,

can be described as

P 3i '2
'l’ = Z .p‘ ) i=1 Il-riexpl-JH-Ti)

where a1 es the information of source amplitude, ri is the radius of ith polenhe

bearing of the source paths (9) are determined by finding the spatial frequen—

(m

cies at which (2) achieves a maxima.

6. SIMULATION RESULTS

In order to perform TAM applied to the direction finding; the temporal snapshot

data and Gaussian noise data were generated artificially by a computer.

1he source signals were generated as one direct path and two reflected path

which are equal in magnitudes. Figure 1 shows Monte Carlo simulation results

for TAM. This figure shows resolution and direction-finding results for three

Proc.|.0.A. Vole Pan: (19an 91

  



   

Proceedings of The Institute of Acoustics

A NOVEL APPRDACH FOR DIRECTION FINDING PROBLEMS

equal-powered emitters at angular locations 20°, 30° and 40°. The SNR was 0 d5.

db

 

7. CONCLUDING REMARKS

TAM algorithm for direction finding problems, with application in multipath

environment with linear equi-spaced arrays, have beenpresented. Computational

complexity analysis (1) shows that it will be possible to implement these

algorithm in real time on high speed parallel processing computer systems

within the next five years. Simulations of the algorithms based on a small

number of input snapshots (64-128) yield satisfactory results. Preliminary

results indicate that one can be optimistic in expecting high resolution and

good accuracy when a relatively small number (10—32) of array elements is used.

For future research, it is suggested to extend the TAM algorithms from one

dimensional to two dimensional array processing; because in some applications

(sonar signal processing) estimation of the elevation angle is important and

we need two dimensional array (e.g. planar array). The approach to estimation

of the elevation and azimuth angles is the same as we propose in this paper.
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