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l-lNTRODUCHTON

The determination of position and velocity of a target using active sonar
observations on range and bearing is a problem in nonlinear estimation theory.

Usually dynamics of the target are modeled with respect to a cartesian
coordinate frame, while the active sonar’s observations consist of
measurements on the target's slant range, azimuth. Since pratical estimators,
such as maximum likehood and the kalman filter based methods, are derived
under. assumption of linearity, the transformation relating the target’s
retangular coordinates to its active sonar coordinates must be linearized
prior to estimation.

The nonlinearities of the active sonar measurement model equation are examined
and their influence upon the accuracy of filtering and smoothing is determin—
ned. In this paper we derived the linearity errors; it is shown that these
errors are proportional to the range measurement. The nature of these lineari-
zation errors is examined and it is shown that they can be exploited to reduce
the linearization error in active sonar applications to tracking and smoothing.

A simple algorithm by which the effects from these nonlinearities can be
significantly reduced is derived. The accuracy of estimates obtained via the
algorithm is compared with and shown to be superior to that of the Extended
Kalman Filter (EKF) algorithms. It is shown that the use of the algorithm does
not increase the computational complexity of estimation to beyond that of a
standard EKF.

Finally, application examples on realistic simulated data of the algorithm to
the problem of tracking a target is presented.
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Let (x,y)’ be the target's position coordinates with respect to asonar-
centered cartesian coordinate frame. The transformation to the cartesian
coordinate system used for tracking, where 8 is measured from the y—axis, is

x

Y

r sinB (13)
r cosB (1b)

* This work was supported by Department of Defense and administrated through
DCN—TOULON/ G.E.R.D.S.Munder contract SLASH N° A 86 76 374.

84.
Proc.l.O.A. Vol 11 Pan 8 (1989)  



 

Proceedings of the Institutue of Acoustics

NONLINEAR ESTIMATION THEORY

Let the vector (x°,y°)‘ be an initial unbiased estimated of (x,y)' having
covariance matrice Po. Ve model the active sonar measurements on range and
beasing as :

rm = r + v, (2a)
5m = B + Va (21))

Where v, and v5 are assumed to be zero—mean independent gaussian noise with
variances 0,2 = E(v2r) and 632 = E (vflz) respectively and

r (x2 + 3'2)”2 (38)

I!
H

x sinB + y c056

B Arctan (x/y) (3b)

"E" is the expectation

The EKF algorithm allows us to use the rm and 5m to update (x°,y°)’ and obtain
a new estimate (xe,ye)' of (x,y)' with covariance matrix Pe.

It is well—know that the EKF estimation equation are [1]

= + Pe Ho' 11-1 [2: (4)

Where

Pa” = 90-1 + H'oR'lflo (5)

and Ho = I/r° [rosinfio rocosflo)

cosB° —sinBo (6)

R = diag (0,2, cal) (7)

Using the above expression the matrix multiplication in (4) becomes:

GS] = C0] + Pe [sinBo] (r — ro)/¢1rz

a a case
+ Pe [costso ) (a — gag/roan (a)

—sinBO

we assume there that Po‘1 is negligible compared with R‘1 then

Pa = Ho'l R H'-1 (9)
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and we can write

x9] 2 Co] + [sin 80) (r — to) + [cos 50 ] r0 (6 - Bo) (10)
a 0 cos Bo -sin BD

we are now going to use equation (10) to calculate the error of the EKF
algorithm
let

r9 = xa sin as + ye cos Be
Be = arctan (Xe/ye)

From eq (9) we can note

Xe

ye

1- sin 80 + r‘, (B — 50) C05 50
r cos 6., — r0 (6 — 6°) sin 6°

The formulation of the EKF algorithme is based on the linearization of eq.
(2), then the estimation errors are :

re - r = [r2 + rt,2 (3- 502]”: ~ r

= r[1 + (B — 60W“: - r
(u)

and

Bo _ a = so _ B + Arctan (rD/r) (8 ~30)

= _ (a _ so) + Arctan (B — 5°)
(12)

In writing down equations (11) and (12) we have just assumed that (r - r°)/r
is negligible — We have also used the following trigonometric identity.
Arctan [(sine + Acose)/(cose — Asin6)] = 9 + Arctan A in deriving eq. (12).

It is clear from eq (11) that when the target range is large, the variance of
the estimation error may exceed the variance of the range measurement error
of, and the standard EKF algorithm will tend to diverge.

This above situation is inherent in the EKF when the innovations processus
(the difference between the measurements (r,B)’ and the predicted position
(r°,B°)') are used to update the estimate position of the target.

It is evident now that the standard EKF algorithm does not preserve the
accuracy of the range update.
We can improve the estimation accuracy considerably if we include in the
calculation of the range innovation the innovation introduced by the bearing
update.
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Consider, now the estimate that results from updating (x°,y°) with hearing
only,

{:1 = xo + r0 (8 — 80) cos 50

1 = yo — to (B - BO) sin 80

let

r1 = x1 sins1 + yl cos 61
61 = arctan (xi/yl)

r — r1 = r — r0 [1 + (5 - 5°)le/z

= (r - to) — 1/2 r0 (6 - so)?

and 3 _ 51 = (5 _ so) - Arctan (B - 80) = 0-

Nov, if instead of using (r - ra) we use (r — r1) to update (x1,y1)’, then,

x2 = x1 + (r — r1) sin 81

{ y2 = y1 + (r - r1) cos 51

Let x2 sinB2 + yz cos 82r2 =
62 = arctan (xz/yz)

Then the total estimation error is given by r - r2 = 0

5 ' 52 = (B — BO) — Arctan (a _ so) = o;

In summary, we can say that if we first linearize the azimuth equation at
(x°,y ' and use the EKF algorithm to produce an intermediate {x1,y1} and then
use x1,y1} to linearize the range equation the estimation errors are
considerably reduced and the possibility of filter divergence due to the
measurement model linearization is virtually eliminated.

The estimation algorithm described above assumes the sonar observations to be

uncorrelated. Unlike the standard EKP algorithm, advantage is taken of the

nature of the nonlinearities in the sonar measurement model by processing the
observations in this order : azimuth, range. It is evident that this algorithm
is not equivalent to the EKF algorithm. In the next section we give
specification of this algorithm.
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3 — ALGORITHM SPECIFICATION

The source—observer geometry is shown
velocity the discrete—time propagation of
va)’ is given by

in Fig.1.
target
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XT (k +1) =

Where t is the time increment between data sample
state transition matrix. The observer state X°
given by

Xu (k + l) = Q (k + 1, k) Xo (k) + To A (k),

where

F =o

0 0
O 0
1 0
0 1

is the input matrix, and

Fox (k + 1) — Vex (k)
A (k) =

Voy (k+ 1) — VOY (k)

represents the incremental change in observer veloc

The range and the bearing to the target, defined by

r (k) = (rTX (k) - r,, (k)) sins (k) + (rTy(k) — rD

8(k) = arctan (rTx(k) — rox)/rTy(k)-rny(k))

are noise corrupted when viewed by the observer.

Consequently, what is available are the range and t

r, (k)
a, (k)

Vhere vr(k) and v5 are a random sequence.

r(k) + v: (k)

a (k) + vs 00

Assuming constant
state X, =

target

(rTx' rTy' erv

(13)

s and o (k + 1, k) is the

= (tox' roy' Vox’ Voy)I is

(14)

('15)

(16)

ity.

y(l0) cosB(k) (17)

(17b)

he bearing measurements :

(183)
(18b)
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If we let the columm vector Y(k) represent the noisy sonarobservations at
discrete—time k, then

Y (k) = h (X(k),k) + v(k) (19a)

where

Y’(k) = (r,,(k). 6,.(k)) (19b)
v'(k) = (V, (k), v3 00) (19c)
X (k) = X,- (k) — X000 = (rx. ry. V,. v!)'
we also assume that v(k) and v (P) are independent for k s p and that

E (v(k) v'(p)) = diag (0:2. 152)
independent of k.

An EKF algorithm having (13),' (14) as its system model and (19) as its
measurement model was then applied to the simulated data.
(For details on the derivation and application of the EKP algorithm see for
example [2]).

The initial conditions, measurement noise variances, and the state estimate
and covariance matrix propagation schemes of the algorithm presented in the
last section are identical with those used in the EKF processing.

The update equations used to process the observations Y(k) are the following.
First, the propagated state estimate X (k+1/k) at discrete—time k is used to
obtain a prediction of the azimuth 8 (k+1/k) and its system derivative

H,3 (k) = as/axlx = X(k + 1k) (20)

The azimuth component of Y(k) is then used to form an updated state estimate
XB (k + 1/k + 1) and covariance matrixPB (k +1/k + 1) where

X5 (k + l/k + 1) = X (k + 1/ K) + GB (k + 1).
[8m(k + 1) — B (k + 1/k)] (21)

PB (k + 1/k + 1) = [I — Ga(k + 1) H'p (k)] P(k + l/k) (22)

and the gain vector GB (k + 1) is given by

ct3 (k +1) = P (k + 1/k) H"a (k).
[He(k) P(k + l/k) H’a(k) + oszl'l (23)

Next, using x8 (k + 1/k + 1), a prediction of the range r(k + 1/k + 1) and its
system derivative

H,(k + 1) = ar/axlx = xI3 (k + 1/k + 1) (21.)

are evaluated.
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The range component of Y(k) is used to form an updated state XBr (k + llk + 1)
and covariance matrix P8r (k + 1/k + 1) where

)(‘,r (k + l/k + 1) = X (k + l/k + 1) + Car (k + 1).
[rm(k + 1) — r(k + l/fi + 1] (25)

P5, (k + 1/ k + 1) = [I — GBr (k + 1) Hr (k + 1)] P)3 (k+1/K+1) (26)

and the gain vector G‘sr (k + 1) is given by

Gar(k+1)=Pfl(k+1/k+1)H'r(k+1).
[Hr (k + ups (k + l/k + 1) H', (k + 1) + 531-1 (27)

The quantities xflr (k + l/k + 1) and PBr (k + l/k + 1) are then used as the
initial conditions for the propagation equations.
The estimator defined by our algorithm equations (20) - (27) together with the
EKF propagation equations, is formally an unbiased minimum variance estimator
to first order in the estimator error.

4 — SlhlelAk11()riS AuVl) FUESIJIJFS

As an application of the algorithm presented in this paper, we consider the
problem of determining, from active sonar observations, the position and
velocity of target moving in straight line.

A set of simulated was generated by applying (13) — (19) to the generated
trajectory and azimuth wiht or = 100 m, 05 = 1° for a modern active sonar
system. The initial conditions are approximately, to a target (r0 = 85 km,
B0 = 45°) with a velocity of 5 m/s.

The results are presented in Figs 2.6. It is obvious from these figures that
EKF estimates are biased and tend to diverge [3] and the estimates generated
by the filter of our algorithm are unbiased and convergent.

5 -(3()PJC]JJSI()P1

An estimation algorithm by which the effects of nonlinearities in the active
sonar measurements model may be reduced, have been presented. The simulations
of algorithm yield satisfactory results. Preliminary results indicate that one
can be optimistic in expecting good accuracy.
The author is grateful to J.C. MARMILLOT of G.E.R.D.S.M for his very.va1uable
contributions.
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