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Abstract

In this paper, a new class of models is presented for the estimation of

model parameters for narrow hand signals in additive white noise. The new

class of models are constrained ARMA models and these have been imple-

mented using the QR algorithm using both oil-line and real-time processing.

The performance of this class of model will be described and applications for

adaptive line enhancement will be given.

1 Introduction

Much efl'ort has been devoted to the enhancement of narrow hand signals

corrupted by additive noise. This problem clearly has many applications

ranging from Sonar to Biomedical signal processing, where signal spectra can

be highly non-stationary. In general. the number and frequencies of the narrow

band components may not be hnown, and indeed, these may change with time.

The use of fixed filters is clearly inappropriate, and adaptive filters which can

respond to the time series and optimise their transfer functions are necessary.

An appropriate parametric model for narrow hand signals is the auto-

regressive (AR) model. and much work has taken place considering the spec-

tral estimation of such signals that can be modelled by such a process, leading

to AR spectral estimation and Maximum entropy methods. However, for real

gnals buried in noise, this simple model is not correct. A sum of L sinusoids

can be written as;
i=2L

31- = 2 fi’n-i
i=1

Proc.l.O.A. Vol 13 Part 9 (1991) 52  



   

   
  

   

   

 

  

 

  

        

  
    
   

         

  

A REAL-TIME QR IMPLEMENTATION

. which defines an autoregressive process of order 2L. Adding white noise, it...
results in the process

j=3L i=3]. i331:

zn=un+sn=un+ 2 fisn‘-j= 2 L'zn—j' Z ,jun-i‘l'un
i=1 5:] i=1

Thus the' appropriate model for narrow bandwidth signals in white Gaus-
sian noise is an AutoRegressive Moving Average (ARMA) model where the
filter coefficients of the AR and MA parts are the same. The power spectral
density P,,(z) of the process 3.. can be written

[1 - F(1)]l1 - 1" (1/1')l
Psz(z) = [1- F(z)][l - F‘(1/Z‘)lpu

where F(z) is the z-transform of the filter coefficients. and A. is the power
of the white noise process. Although accurate for pure tonals in white noise,
the pole-zero degeneracy on the unit circle prevents the power spectral density
being defined at all frequencies and creates numerical difficulties in estimating
the model parameters. One way of extending the model to take account of

finite bandwidth signals, is to separate the poles and zeroes in certain ways.

The constraint introduced by Nehorai (1985), allows the poles and zeroes to
move independently along a radius of the unit circle. This constraint was also

' discussed by Thompson (1979).

'. . In this paper, a new constraint is introduced which still preserves the

features of a constrained ARMA (CARMA) process, and has the form

jfizL 5321,

2n = E (1 + Alma-1' - Z Miun-i + "n—j
i=1 jal

Poles and zeroes still occur in pairs, but the problems resulting from pole-
zero cancellation are avoided. with poles occuring at the solutions of the equa-
tion (1 + A)F(z) = 1 and zeroes at AF(2) = 1.

'In this class of model. A defines the resolution of the spectral estimator,

with the filter bandwidth narrowing as A increases. In the limit of infinite
A, the degenerate case is reached with infinitely narrow resonances centered
on the tonals, with the poles and zeroes coinciding. Decreasing A moves the
poles closer to the origin, with thelimit as A tends to zero corresponding to
an autoregressive model.

As can be seen from the form of the transfer function, this model has inter-
esting properties. By changing the value of the parameter A one can modify

the form of the model that one is trying to fit the data with. Since signal

parameters, such as frequency and amplitude. of real signals, can be time

dependent, an obvious method for the solution of the filter coefficients given    Proc.l.O.A. Vol 13 Pan 9 (1991)
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above, is to use adaptive signal processing methods. The more commonly used

adaptive algorithms assume that the signal to be detected can be modelled as

an AR process, and hence the FIR adaptive filter is the appropriate ‘matched

filter' for this model. In the case of our constrained (CARMA) model, an

adaptive filter of the form shown in Fig l. is used. It should be noted that

the form of constraint used by Nehorai (1983) is much more computationally

intensive than our constraint.

till ‘

g In 1
- w‘H ,

n .

Fig l. The line enhancement linear prediction filter for the CARMA process

 

However, for IIR filters the error surface is not, in general, unimodal, and

much effort has been directed to the problem of finding efficient algorithms for i

the solution of the HR filter coefficients. The adaptive line enhancer is basi-

cally aleast squares predictor for the observed time series. and in its realisation

as a non-recursive tapped delay line, it lends itself to simple adaptation pro

cedures. Most adaptive llR algorithms proposed for use with recursive filters

have been derived from a direct form implementation of the filter coefiicients.

However. some disadvantages of implementation with respect to the direct

recursive filter structure, such as finite precision efiects and the complexity of

stability monitoring, have led to the development of alternative realisations.

In this paper, a real-time implementation of the constained (CARMA) filter

given above is described. One method chosen for the solution of the filter

- coefficients was amethod based on the QR decomposition, although other

methods were also implemented, Fitzgerald and Pedley (1991). The next sec-

tion will decribe the theory and implementation of the Qltalogorithm for our

form of transfer function, and the following section will describe the results

obtained using this model.

      

2 Theory

Solutions to the constrained ARMA model can be obtained by miniming

the pouler of the error process, from the spectral inverting filter, which is one
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minus the filter transfer function, and is given by

_1—(r+r)r
H" 1—”

The error power C = E{e[n]’} is defined by the inverse Wiener-Khintchine

relation between the power spectral density and the autocorrelation sequence

4 = J— } P,,(z)H.(z)H:(1/z')dz/z
21rd

which from above can be written as

_ 1 l1 - (l +1)F(z)][1-(A +1)P(1/z‘)l
c ' _f P"(’) [1- Ar(z)][1— AF‘(1/z')]211‘

At the least squares configuration, the error power will be at a minimum

defined by the set of M constraints given by

ac _ -1 [1 — 0+ r)r‘(z)]="075 _ 7 fexam

for j=1,M.

In the adaptive filtering problem, the ‘data matrix‘ has a Toeplitz struc-
ture sothat each row of the data matrix contains only one new datum when

compared to the previous row. Various algorithms have been devised that

. take advantage of this structure to reduce the computational load , for a p th

' order filter from 0(1):) to 0(p), but many of these algorithms are not well-
conditioned, and can led to numerical instabilities. It is posble to solve the

least squares minimisation problem using the QR decomption, which has
the advantage that it operates on the data matrix directly, rather than on

the corresponding covariance matrix, and only involves orthogonal rotations,

which are numerically stable.
To produce a QR decomposition, a series of rotations Q are applied to

a matrix to produce an upper triangular form R. The solution of a series of

linear equations is straightforward. and even when the system is singular the

least squares solution is readily found.

Givens rotations are used, and each rotation can be represented by a2-D

rotation of two of the rows i and j. with all other rows unaltered.

(:5)=(::n::::)(::)
Q is a product of such rotations such that

QX = R
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where X is the original matrix. The rotations are numerically stable and Q"

can readily be calculated if required.

Such a decomposition requires 0(n’) operations. The method can be

applied to non square matrices. If an extra row is added to X to g've X' then

a series of n extra Givens rotations Q' will he required to produce the new

decomposition.

QX=R

°'(‘3 3)(’=‘)=°’(f)=(’5)
where 0 represents zero vectors of the appropriate dimenons. The update

of the decomposition requires 0(n') operations.

The filtering problem for a three element filter and a data series so, 2., - -

-,:r.. is to choose y; - — — ya so that the filter error vector e has minimum

norm.

in 32 81 to ¢r

W 33 32 3] C;

its 3c 33 32 yr :3

— . . . y; = .

. . . y: .

ya 3!: 3n-1 zfi-3 en

where y is the desired filter output.

The adaptive filtering problem will normally weight the error vector in

some appropriate way (e.g. exponentially) and adjusts the filter weights as

successive data inputs, i.e. rows of X. are added. Each row of X is just the

previous row shifted to the light and one new value, 2... added. This form

allows a fast algorithm to be devel0ped, which only requires 0(a) operations

for each new row added.

For our real-time implementation using the QR decomposition. a DSP32C

processor installed in an IBM/PC was used together with a Tektronix graph-

ics board for the real-time display of the filter transfer function. The QR

algorithm produces the output of the filter, and every now and then the fil-

ter weights are frozen and the filter excited with a delta function to give the

transfer function which is then displayed. For the current real-time system

the sampling rate used is 512 Hz for a filter with 256 weights.

The QR algorithm implementation is described in this paper due to its

much faster response compared to other algorithms. This fast reaction time

together with many other features of the algorithm will prove to be important

for many applications.
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3 Results

The results obtained using the QR algorithm. for the solution of the con-
strained ARMA (CARMA) model, using off-line simulated data, are shown

in Fig 2., where the filter transfer function is plotted against frequency for
various values of A. The individual curves correspond to a) A = 0. b) A = 4.

c) A = 8. d) A = 16. It will be seen that the transfer function corresponding
to A = 0 has the familiar FIR shape, with a broad central lobe, and high side

lobes. The effect of increasing A is to sharpen up the central line, and also to

depress the side-lobe levels. The data used was a single sinusoid centered at

60 Hz buried in noise. and the gnal-to-noise ratio was -10 dB. Fig 3. show
the results obtained for a fixed value of A and a varying number of samples,

corresponding to a) 1,000 points, b) 10,000 points, and c) 100,000 points.

   Fig 3.

The length of the filter was 52, and the sampling rate was 512 Hz. The
algorithm has operated with many closely spaced tonals, and due to the ex-
tremely sharp central lobe in the transfer function. the filter can achieve super

resolution, with also the added advantage of a reduction in false alarm rate
since the side-lobes are very significantly reduced.

4 Conclusions

In this paper we have introduced a new constrained pole-zero (CARMA)
model which is the appropriate model for finite bandwidth sinusoids in white
Gaussian noise. The model has the feature that the bandwidth of the signal
can be tuned using the parameter A, and in the limit as A tends towards zero.
the standard FIR filter is obtained. The model has been implemented to
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real-time on n DSP32C, and the method choosen in this paper for the solution

of the adaptive filter coefficients was based on the QR decomposition, although

other implementations have also been used and will be reported separately.

The model has shown very good performance for data consisting of many

closely spaced tonals in the presence of high noise levels and the model has

many useful applications ranging from sonar to biomedical processing.
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