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1. INTRODUCTION

Sound waves have already been used for probing meteoralogical data such as large scale temperature
and velocity profiles /1/. To extend this kind of remote sensing technique to small scale temperature
and velocity inbomogeneities generated by the turbulent motion of the air a statistical theory is
needed. Although no general theory to connect sound pressure statistics and atmospheric atatistics
exists, there are severa) approximate solutjons to the problem. The most common approximation is
the parabolic equation method. Results obtained by this method are restricted to small fluctuations
of a scalar refractive index and to smal]l wave lengths. While the atmospheric fluctuations are almost
small, it is desirable to overcome the wave length restriction. Furthermore, the temperature and
wind field cannot be reduced to a scalar refractive index in general. This paper presents a twofold
generalization of the parabolic equation method. At first, the small wave length restriction is
removed by the developement of an approximation method based on the scalar Helmholtz equation
instead of its parabolic form. At second, the sound wave equation given by Tatarskii /2/, which
contains the whole velocity vector, is transformed into an operator Helmheltz equation on which
the approximation method can be apphed, too. In this paper we confine ocurselves to tha Rrst
statistical moment of the wave field. The proposed method can also be applied to higher statistical
moments. References will be given for more general results,

2. TEMPERATURE FLUCTUATIONS

We start with the scalar Helmholtz equation containing a random function u (refractive index
deviation from its mean value)!:

(a+8(1+ (M) 67 =0 | ()

A = Laplace operator; k = wave number; = complex sound pressure
Equation (1) is & stochastic differential equation and the sound pressure ¢ becomes a random
function, too. Stochastically this equation is nenlinear, e.g. it contains & product of two random

VIt can be seen from the more general wave equation (15) that x4 is a function of temperature, If the velocity vector
in neglected.
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variables. For this reason the stochastic Helmholiz equation cannot be solved exactly. Further ap-
proximations are necessary. Mainly two kinds of smallness are used for the various approximation
methods. Temperature fluctuations are limited by the condition < u? >< 1 and the wave length is
assumed to be much smaller than the typical size of the mediums inhomogeneities expressed by the
correlation length (A < !). While the parabolic equation method is based on both assumptions,
the generalized method described in section 2.2 replaces the small wave length limit by the weaker
condition of neglecting the backscattering,

2.1 Parabolic Equation Method

The widely used parabolic equation method solves the stochastic Helmholtz equation for the sta-
tistical moments of the wave function. It is briefly reviewed here in order to compare its results
with corresponding results of our generalization. For the small wave length limit the Helmholtz
equation can be converted approximately into a parabolic form using ¢ = pet* f4/:

3 2
(ma% + -‘,?;,- + :—y, + k',u(a) p(f) =0 B ¢

This approximation physically means the restriction to small scattering angles. The wave propa-
gates within a narrow cone in the main propagation direction z. The smallness of < u% > is uged
to derive moment equations by the local method of small perturbations /4/. By this method the
scattering valume is divided into slabs perpendicular to the main propagation direction z. Each
slab is chosen as thin as required by the validity limit of the first order perturbation expansion
term (single scattering approximation, Born approximation). This distance clearly depends on
the strength of the temperature fluctuations. If these fluctuations are sufficiently small, the slabs
are much thicker than one correlation length of the random medium. Therefore the slabs can be
regarded as uncorrelated. Based on both assumptions - small temperature fluctuations and a smalil
wave length compared to the correlation length - the statistical independence of subsequent slabs
can be proofed mathematically. Wave propagation through random media is described here as a
Markov process. As a consequence of the Markov property slabs of finite thickness are no longer
necessary. This results in a differential equation for the mean wave function?®:

: 2 2 '
(m;; + % + :—y,- + L?-A,,(o,o)) <p(>=0 . (3)
Az} = [deByew2) | B = <u(@dulo+ 7> (4)

Equation (2) can be solved easily. Using again ¢ = p ¢™** it follows:

< Y[F) >= ¢o(F) exp {—%31[,.(0,0) z} (5)

?The autocorrelation function B, in assumed to be homogeneous and isstropic. Equations for the higher statistleal
moments obtained by this method are found in /2 and f4/.
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The mean complex sound pressure decreases exponentially while the wave propagates through the
random medium. This is an effect of decorrelation of the scund wave due to phase fluctuations.
Different members of the statistical assembly interfere destructively because of their different pha-
ses. The validity of result (5) - and of any other result obtained by the parabolic equation methed -
is restricted first by the validity of the parabolic wave equation (2} and second by the validity of the
Markov assumption. Necessary conditions are the smallness of temperature fluctuations and the
smallness of the wave length (compared with the correlation length), In the next section the first
condition is also assumed to be true. The small wave length assumption, however, will be replaced
by the weaker condition of negligible backscattering. This will lead to a generalized Markov process
and, consequently, to generalized results with respect to the wave length - correlation length ratio.

2.2 Generalized Local Method of Small Perturbations

While generalizing the parabolic equation method the main idea of the local method of small per-
turbations will be retained. The temperature fluctuations are assumed to be small enough to justify
the application of the Born spproximation within a distance Az in the scattering volume which is
large compared to the correlation length. Again the scattering volume is divided into slabs of this
size. Therefore subsequent slabs are uncorrelated as well. Neclecting the backscattering yields a
difference equation for the mean sound pressure:

< Yfn, nAL) >= (60 + §) < W(fat1,(n—1)A2) > (6)

7 = (z,4); n = number of slab

A

Gy is the integral operator of the homogeneous Helmholtz equation (u =0, free propagation) and
A

S is an integral operator for the scattering within one slab. Since double scattering is the lowest

A
order non-vanishing term, the kernel of § contains the sutocorrelation function of the temperature
field:

S (Fa?) < WA >= -k [ [#76(,FIGE A < P > <) > (0)
G = Greens function of the Helmholtz equation

For the case of a homogenecus temperature autocorrelation function, equation (7) becomes a con-
volution product. It can be Fourier-transformed with respect to the variable 7, and this operation

A AN ~ ~
turns the operators § and Gy into simple functions § and Gg. In the Fourier representation
equation (6} reads:

<¢ (R,nAz) >= (E., + .'s") < (R (n - 1)Az) > @

& = 2-dimensional spatial frequency
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By Fourier-transformation the Fintegrations are already performed. After z-integration the scat-
tering contribution of one slab is seen to be approximately proportional to the slabs thickness Az.

Therefore equation (8) can be written as (E =12 Az):
<; (%, nAz) >= (&u +3 Az) <1.Zv (R, {n-1)Az) > ) (9)
The effect of all stabs is obtained by iteration:
<% (RonAz) >= (50 +3 a.z)" %0 (7,0) (10)

Because of the smallness of the scattering contribution to cne slab the product in (10) can be
expressed by an exponential function (z = n Az):

< (R, ) >=vp (7.2) ezp{ 3 (%) £} (11)

The scattering function & depends on the 8-dimensional Fourier transform of the autocorrelation
function {power spectrum}) @, /5/:

% (x) = _ﬂfdﬂgv Qu(#,a'—a) (12)

a=VE-R , o =yR-@-R , ef)= £78Pp.m  (3)

To-compare (11) with the corrﬁponding parabolic equation method result (5), 7 has been calculated
for an exponential antocorrelation function of the medinm, which leads to a closed form expression
/5/. If the incident wave ¢ is assumed to be a plane one, the inverse Fourier transform finally

results in:
< u? > KBl (K83 - ikl) }

(14)

< W{7) >= ol) exp {— T O+

I = correlation length
The real part of the exponent describes the decorrelation of the sound wave. It is a more general
expression than k3 4,(0,0)/8 - only in the small wave length limit they are equal®. By the imaginary
part of the exponent, a second effect is predicted by this method, which cannot be seen in the
parabolic results. The imaginary part is a stochastic correction to the wave number & due to
an increase of the mean propagation distance in the random medivm. Only in the small wave
length limit the scattering angles are small and the mean propagation distance correponds to the
z-extension of the scattering volume. The approximation method presented here has been applied
to the scalar Helmhotz equation. It will be used to solve a more general wave equation, which
contains temperature and wind vector in the following section.

3For an exponential autocorrelation function we have A4,(0,0) =2 <u¥> L.
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3. TEMPERATURE AND WIND FLUCTUATIONS

Up to this point, we have discussed the wave propagation in a random medium, in which the
refractive index is a scalar variable (temperature). In this section, our attention will be turned to
Tatarskii's equation which includes the wind vector. At first, Tatarskii’s equation is rewritten in
& form that is similar to the scalar Helmholtz equation. {We call it Operator Helmholtz Equation
(OHE}), because the scalar refractive index is replaced by a differential operator.) At second, this
equation will be reduced and selved by the parabolic approximation. It will be seen that in this
case only the wind component along the direction of the incident wave affects the sound field.

Finally, the equation for the first statistical mement based on QHE is derived and solved by using
the generalized LMSP.

3.1 Derivation of Operator Helmholtz Equation
Starting with Tatarskil’s equation /2/:

Ny =Dy 2 P 0y
where T = %{1’-, relative tempersture flucturations, u} = 2L : the I'th component of the relative
wind vector (related to the sound speed ¢g). Since the constant air motion leads merely to a Doppler
frequency shift, we restrict our analysis to the case where the mean value of € is zero, < u} »= 0.
{In this paper the double satne subscripta represent summation.) Neglecting the higher order term
of the small variable 1%, equation (15) can be rewritten in the following form:

Ay + k¢ = KLy (18
= 19k @ = B0
L=r k2 3z; dz;' Ly =T’ Pl (17)

In comparison of (18) with (1) the refractive index u is replaced by a complex operator L. Therefore,
equation (16) is called Operator Helmholtz Equation.

3.2 Parabalic Approximation to the OHE

When the incident wave length is small in comparison with the size of the typical inhomogeneities of
the medium, the wave propagates mainly along the incident wave direction. In this case, Tatarskii's
equation can be recasted into a parabolic form /6/:

. 9 a a? 2 _
(2:1:8—'- + 37 + E] + 2k n) p(f) =0 (18)

=1~ 9 dp
n= (1~ )GT + ) (19)
This equation is different from (2) only in the refractive index n. Here the refractive index includes

not only the temperature, but also the wind velocity. Due to the small angle scattering in the
parabolic approximation, the other two wind components perpendicular to the direction of the
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incident wave do not contribute to the refractive index. Using again the parabolic equation method
leads to:

< 9(R) >= po(F exp (_E;EA,(O).) (20)
+oo
4 = [ @un(dz, Bunlp2) = < niFo)n"(Ro + 7 > (21)

here the superscript {*) means the complex conjugate.

3.3 LMSP based on OHE

Now, the generalized LMSP is used to solve the Operator Helmholtz Equation. The basic physical

ideas described in section 2 are not changed. Ouly the scattering operator § in equation (6) will
be replaced by 5;:

By <o) > = B [ [6(R.A <Le(r AL >< w)> 77 ()
Because the differential operator L takes the derivative only with respect to the variable 7, and

the operator L' only with respect to the variable #, the integrand in the above equation can be
simplified further and is written in the follewing form:

<LG(7)U >= 4DG < ¥ (Ae(?) > DT (23)
where the superscript (T) means the transpose of matrix.
= [T e S, (20
) = [% W R ﬁ'u'm] (25)
D= [1' a_a;:.-' 6::;:,-’ 6::,::.-6‘:.-] (26)
= [1' a_%' Bz'i!a:rﬁ' a::,,g:;.ax;] ()

For the homogencous medium < &7 (Fe(F') >= E(F - 7). It is obvious that E is a 4 x 4 matrix.
Hence:

S (R,#) <o) > ,= 4k f f G(R,ADG(F, /B[ - F)DT < y(7) > &7 (28)
Like equation (8) the integral is a convolution product, too. The difference between this two

equations is that the integrand of equation (28) contains two differential operators acting on the
Green's function and the wave function, respectively. This makes our problem a little difficult.
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However, Fourier transformation makes the derivation in F-space g simple factor in K-space. After
two dimensional FT equation {28) will be simplified and only z-integration is left. By extending
the intergration limits to infinity (which is possible, because of the slabs being much thicker than
correlation length), z-integration can be interpreted as a one-dimensional FT of function E(%, z).
After mathematical reduction the final result is similar to eq.(11):

< PR, z)>= e~Selfe o Jol&, z) > (29)
Su(R) = 30 [ 9‘;—,"1:1(.?,‘;' - oKTR (30)
where '
K™ = [k,x1 ~ x}, k2 = x4,0"], K = [k,x;,x3,4] (31}
k- - K K-k .
Q_=1+T' R=l——kT—. (32)
k™ = (k- x}, k3 —x3, 0'), X = (&1, £2,0), ¥ = (&}, &}, a' - a) (33)

®(7",0' — a): is the 3- dimensional spectrum of the correlation function matrix.

o Qn Pz Tos
0 Su Pz Py

&= S $u Pz P2 (34)
Cs0 Pu Tz Ouy
le(-ﬂ) = /d’;c‘R-?B]m(ﬂ, lsm= 0,1,2,3 (35)
Bo() =< 3PFRTR) > Bylf) =< SPEu) > (38)
1
Bl =< wi(f)3T (") > By =< (Ful(#) > (37)
F=¢f-F, i,7=1,2,3 (28)

< J:n(f:',,,z) > is the spectral form of the incident wave that propagates to z without scattering.
The scattering function Sy, differs from {12) in the factors @_, R, K~ and K, which are caused by
the refractive index operator. Furthermore the former spectrum function is extended to a spectrum
matrix ®, which contains all possible correlation functions of temperature and wind velocity field.
Therefore, the assumption that the thickness of slabs being larger than the correlation length should
be extended to: the slabs thickness must be larger than the maximal correlation length of all the
10 correlation lengtha {because of the symmetry properties of matrix ®, only 10 elements of this
matrix are independent). If the incident wave is assumed to be 2 plane one and the parabolic
approximation is used, the final result equation (29) can be further simplified and reduced to
equation (20).

The results of this section can be regarded as the extention of those in section 2. If the wind
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velocity vanishes and only the temperature is left, equation (30) becomes:

x _ kK rQ.R
This correponds to equation {12) with: ®, = 4Q_R®w

4. CONCLUSIONS

A generalized form of the local method of small perturbations has been presented in this Paper.
Working directly from the Helmholtz equation instead of the parabolic equation the small angle
scattering was replaced by forward scattering. Results for the firat statistical moment of the wave
function obtained by this method show corrections to the carresponding results with respect to the
wave length - correlation length ratio. Furthermore, an Operator Helmbholtz Equation was derived
from Tatarskii’s wave equation. Applying the above mentioned method to the Operator Helmholtz
Equation leads to extended results including the wind velocity. Both generalizations of the Pa-
rabolic Equation Method are necessary for remote sensing the atmosphere's random temperature
and wind field by sound measurements,
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