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The non-destructive testing of pipelines encounters many different environmental con-
ditions, which includes pipelines that are buried in materials such as soil, sand and even 
concrete.  In addition, these pipelines may carry gases or liquids, such as oil or water.  
The location of cracks or areas of corrosion in pipelines often encounters varied envi-
ronmental conditions and this requires knowledge of the influence these conditions have 
on the propagation of elastic waves travelling down the pipe wall.  This includes 
knowledge of modal group velocity, which is used to estimate the time-of-flight of a 
pulse scattered by a defect, as well as the reduction in inspection range caused by the at-
tenuation of energy in the pulse.  Accordingly, it is desirable to develop theoretical 
models to help in understanding the influence of different environmental conditions, and 
so in this article the semi-analytic finite element (SAFE) method is used to obtain the 
dispersion curves for buried liquid filled pipes.  It is shown that through a Galerkin 
based formulation a governing eigenequation may be formulated in a way that delivers a 
fast and efficient solution.  Crucially, this involves the utilization of a semi-
orthogonality relation so that modes can be sorted quickly and easily in order to focus 
on those modes relevant in commercial non-destructive testing. 
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1. Introduction 

Pipelines are found in many different engineering applications and it is common for pipes to be 
filled with a liquid and to be buried underground. This presents many operational risks associated 
with the possibility of degradation and ultimately failure of a pipeline, and so it is important to de-
velop techniques to monitor and predict structural integrity. For example, one may use passive sen-
sors to detect a pipe rupture, and this normally involves measuring the presence of acoustic waves 
that travel away from a pipe rupture along pipe walls [1]. Alternatively, one may attempt to actively 
monitor the structural integrity of a pipe using an appropriate inspection regime. This falls under the 
category of non-destructive testing, and normally involves an acoustic wave being launched down a 
pipe wall from an array of transducers, and then echoes from defects such as cracks or areas of cor-
rosion being picked up as they return to the transducers. This method is commonly known as Long 
range Ultrasonic Testing (LRUT) [2]. The two methods rely on similar phenomena, namely the 
ability of pipe walls to transmit sound energy over distance, however passive techniques tend to 
operate in the low frequency range, whereas active techniques focus on much higher frequencies, 
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normally in the ultrasonic range.  Thus, if one is interested in developing an understanding of how 
these waves propagate then it is necessary to develop techniques that are capable of covering a wide 
frequency range.   

In order to better understand the propagation of sound waves along pipelines, it is desirable to 
develop mathematical models that enable detection techniques to be improved and optimised.  
Moreover, it is common for pipelines to be buried and also to be filled with a liquid and this further 
complicates the mathematical analysis.  Accordingly, this article presents a numerical model based 
on the Semi-Analytic Finite Element (SAFE) method, and shows that a model of this type is capa-
ble of accommodating internal liquids as well as a surrounding material. 

A number of computational methods are available for obtaining the eigenmodes for sound prop-
agation along the walls of fluid filled buried structures.  For example, one may adopt analytic tech-
niques based on the use of a transfer matrix approach [3], or utilise low frequency approximations 
to generate analytic expressions for low order modes [4].  However, an analytic approach is not 
readily applied over a wide frequency range, this is because at higher frequencies many modes 
propagate and it can become difficult to locate and track all of the roots of the dispersion relation.  
Accordingly, it is attractive to develop numerical techniques capable of being applied over a wider 
frequency range, and here the SAFE method provides the most robust methodology for doing this. 

The SAFE method is now a popular technique for analysing guided waves.  See for example, 
Hayashi et al [5] who apply the SAFE method to a pipe, and the series of papers by the first author 
for coated pipes [6, 7, 8].  Nguyen et al. [9] later showed how the SAFE method could be extended 
to the study of buried pipes through the use of a perfectly matched layer (PML), see also the article 
by Treyssède [10].  Duan and Kirby [11] later showed that by separating out the radial and circum-
ferential components in the PML region, it was possible to develop a one-dimensional approach to 
obtaining the eigenvalues for buried pipes.  This was seen to provide a fast and efficient technique 
so that eigenmodes for buried pipes could be obtained over a wide frequency range and for relative-
ly large pipes. 

This article extends the recent work of Duan and Kirby [11] to include a fluid inside the pipe, so 
that the pipe is now buried and fluid filled.  A one dimensional approach is maintained throughout 
and the SAFE-PML development is described in section 2.  In section 3 dispersion curves are then 
presented and the effects of the fluid in the pipe are analysed. 

2. Theory 

The SAFE method is applied here to a fluid-filled pipe buried in soil, see Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Geometry of fluid-filled buried pipe. 
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The pipe wall (region 1) and the surrounding soil (region m) are assumed to support elastic wave 

propagation, and so the governing equation for each region is Navier’s equation:  

ߣ)  + ∇)∇(ߤ ∙ ࢛ᇱ) + ଶ࢛ᇱ∇ߤ = ߩ
డ࢛ᇲ

డ௧మ (1) 

where ߣ and ߤ are the Lamé constants, ࢛ᇱ is the displacement vector, ߩ is density and ݐ is time.  
A time dependence of ݁୧ఠ௧ is assumed, where ߱ is the radian frequency and i = √−1.  The orthog-
onal coordinate system (ݎ, ,ߠ  is the axial ݖ are shown in Fig. 1, and ߠ and ݎ is used here, where (ݖ
co-ordinate, so that ࢛ᇱ = ௥ݑ]

ᇱ ఏݑ
ᇱ ௭ݑ

ᇱ ].  The displacement in each direction is then expanded over 
the guide eigenmodes to give 

௥ݑ 
ᇱ =  ௥݁௜(ఠ௧ି௡ఏି௞೅భఊ௭) (2)ݑ

ఏݑ 
ᇱ =  ఏ݁௜(ఠ௧ି௡ఏି௞೅భఊ௭) (3)ݑ

௭ݑ 
ᇱ =  ௭݁௜(ఠ௧ି௡ఏି௞೅భఊ௭) (4)ݑ

This expansion assumes symmetry in the circumferential direction so that the theta dependence 
may be written as ݁௜௡ఏ, where ݊ denotes circumferential mode order.  In addition, ߛ is the coupled 
[dimensionless] wavenumber for the problem, and ݇

భ்
= ߱ ܿ

భ்
⁄  where ܿ

భ்
 is the shear wave veloci-

ty for the pipe wall.  The assumed ansatz for displacement is then substituted back into the govern-
ing equation, and here it is convenient to separate Navier’s equation into its three components.  
Once this has been done, a finite element based solution is sought, so that each equation is weighted 
by the function ݓ and integrated over regions 1 and m.  Further, a weak formulation yields 
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The FE method proceeds by approximating the displacement using the shape function N, so that 
in direction q, 

(ݎ)௤ݑ  = ∑ ௤ܰ௜(ݎ)ݑ௤௜
௣೜

௜ୀଵ =  ௤࢛௤ (8)ۼ

where ݌௤  is the number of nodes in the mesh for direction q.  If we assume isoparametric ele-
ments, then N௤ = ௥ݓ ௤, and it is convenient also to setݓ = ఏݓ = ௭ݓ = ௥ܰ = ఏܰ = ௭ܰ.  The shape 
and weighting functions are then substituted back into Eqs (5)-(7). Note that in the PML region it is 
necessary to perform the integral over a stretched co-ordinate, which is defined as 

ݎ̃  = ׬ ݏ݀(ݏ)௥ߦ
௥

଴  (9) 

In the fluid region, the governing equation is Helmholtz’s equation, which gives 

 ∇ଶ݌ᇱ −
ଵ

௖బ
మ

డ௣ᇲ

డ௧మ = 0. (10) 

The pressure in the fluid region is then expanded in a similar way to that used for the solid re-
gion, and so 

ᇱ݌  =  ௜(ఠ௧ି௡ఏି௞೅భఊ௭) (11)݁݌

Finite element discretisation of this equation, then yields 
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Equations (5)-(7) and (12) represent the governing equations of the problem and they are cou-
pled together through the boundary conditions at the interface between the fluid and the solid.  
These are given as 

 at ݎ = ଴ݎ :   
డ௣

డ௥
= ݌ ௥, andݑ଴߱ଶߩ =  ௥௥; (13)ߪ−

 and at ݎ = ఏ௥ߪ   :଴ݎ = ௭௥ߪ = 0. (14) 

It is necessary also to close the problem by applying boundary conditions at the outer edge of the 
PML.  These boundary conditions are arbitrary, and the following are chosen for convenience 

 at ݎ = ௥௥ߪ   :௠ݎ = ఏ௥ߪ = ௭௥ߪ = 0. (15) 

This then delivers four simultaneous and coupled equations, which can be solved to recover the 
wavenumber ߛ for the problem.  The phase speed for each mode is then given as ܿ = Re(ܿ୘భ

 (ߛ/
and the attenuation as Δ = −8.686 Im(݇

భ்
 .(ߛ

3. Results 

In this section, dispersion curves are presented for a steel pipe filled with water and buried in 
soil.  The properties of the water are ߩ଴ = 1000 kg/mଷ and ܿ଴ = 1480 m/s.  An 8inch Schedule 
40 steel pipe is examined here, so that ܽ଴ = 101.36 mm, ܽଵ = 109.54 mm, ߩଵ = 7932 kg/mଷ , 
and the shear velocity is ܿ

భ்
= 3260 m/s and the longitudinal velocity ܿ௅భ

= 5960 m/s.  For the 
surrounding soil, ߩ௠ = 1900 kg/mଷ , and ܿ

೘்
= 80 m/s; the outer radius of the PML is ܽ௠ =

273.12 mm.  For the longitudinal velocity in the soil, two values are investigated: ܿ௅೘
= 1000 m/s 

and ܿ௅೘
= 1600 m/s. 

To solve the problem, 50 elements are used in the water, 50 elements are used in the pipe wall, 
and 800 elements are used for the PML layer, with the properties of the PML layer being identical 
to that used by Duan and Kirby [11]. Note that the PML settings here are mainly used to capture so-
called leaky modes [9, 10], as these are most relevant to non-destructive testing applications. For 
trapped modes [9, 10], it might be possible to use different PML settings, which will be investigated 
in a different article. This delivers a total of 5204 degrees of freedom for the coupled system and 
150 modes are computed at each frequency. 

In Figs. 2 and 4, the phase speed of leaky modes is presented for the two different longitudinal 
velocities in the soil, and in Figs. 3 and 5 the corresponding values for attenuation are presented.  A 
lower frequency range is used in these plots to ensure that they remain reasonably clear and it is 
easy to follow the different propagating modes.  The model can readily compute eigenmodes at 
higher frequencies, and into the ultrasonic range, however this delivers much more complicated 
dispersion curves and this will be discussed below.  It can be seen in Figs. 2-5 that the presence of 
the liquid begins to influence the propagation of the structural modes as the frequency is increased.  
For example, for L(0,1) (the first longitudinal structural mode) the phase velocity and attenuation 
begins to change as the frequency is increased and here it is interesting to note that the degree of 
influence imparted by the fluid is also dependent on the properties of the soil, as the difference be-
tween the two sets of figures illustrates.  Obviously, the presence of the water does not affect the 
propagation of T(0,1) (the first shear, or torsional, structural mode) as this is a shear mode, however 
it is useful to include this as a check that the model is delivering physically plausible results.  Note 
that the soil has a significant effect on T(0,1) as the frequency is reduced, this is because the energy 
from the structure begins to transfer into the soil at low frequency and this causes the attenuation to 
increase rapidly. 

The addition of water now supports additional modes.  At low frequencies, the energy of mode 
 ଵ is concentrated in the fluid and pipe wall; however, as the frequency is increased, some of thisߙ
energy now begins to transfer into the soil, which causes a rapid rise in the attenuation of ߙଵ for a 
value of ܿ௅೘

= 1000 m/s.  Thus, as one would expect, if the properties of the soil are changed, 
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then it is seen that the attenuation of ߙଵ is also changed, and in this case it is lowered across the 
frequency range when ܿ௅೘

 is increased.  However, it is clear that energy contained within fluid 
borne modes may leak out of the fluid at higher frequencies and encounter high levels of attenua-
tion, which means that one must be careful when looking for information carried by this mode and 
at the very least some prior estimation of the behaviour for this mode will be necessary before using 
it for detection purposes.   

The ߙଶ mode is a more complex mode that is discontinuous in the curves presented here.  This is 
because the mode changes from radiation to so-called leaky.  That is, at lower frequencies the vast 
majority of the energy in this mode is located in the soil, and so this is considered to be a radiation 
type mode (and hence is not shown on the figure).  As the frequency increases, the energy in the 
pipe and fluid increases so that it is now propagating with the majority of its energy in the pipe/fluid 
– this is known as a leaky type mode.  It is the leaky modes that are of interest in non-destructive 
testing, and it is seen that this mode is not strongly affected by the presence of the fluid, at least 
when the longitudinal speed in the soil is increased.  This mode serves to illustrate the complexity 
of this type of problem, whereby the energy in the modes moves from the solid into the pipe and/or 
the fluid across the frequency spectrum.  This makes it difficult to track particular modes, especially 
as a large number of radiation modes are often detected.  Accordingly, a major issue with the SAFE 
method, in which hundreds of unsorted eigenmodes are computed, is the identification and sorting 
of eigenmodes relevant to non-destructive testing. 

The results presented here show that as the frequency is increased, the attenuation of particular 
modes is dependent on the conditions in the soil, as well as the presence of the fluid.  However, it is 
seen that even in such a complex situation, some modes have attenuations that are acceptable for the 
detection of defects and/or ruptures in pipes.  For example, L(0,1) consistently delivers relatively 
low values of attenuation over the frequency range, and provided one avoids very low frequencies, 
T(0,1) will also be suitable for detecting defects and leaks.  However, at higher frequencies, and 
into the ultrasonic regime, the problem becomes considerably more complex, and further work is 
necessary in the identification and sorting of modes.  Moreover, the plots presented here are for a 
large steel pipe, and a reduction in the size of the pipe will facilitate the simplification of the disper-
sion curves at higher frequencies. 
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Figure 2: Phase velocity for cLm=1000 m/s.                   , water-pipe-soil;                   , pipe-soil. 

 
Figure 3: Attenuation for cLm=1000 m/s.                   , water-pipe-soil;                   , pipe-soil. 
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Figure 4: Phase velocity for cLm=1600 m/s.                   , water-pipe-soil;                   , pipe-soil. 

 
Figure 5: Attenuation  for cLm=1600. m/s.                   , water-pipe-soil;                   , pipe-soil 
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4. Conclusions 

This article presents a summary of a SAFE method suitable for obtaining the leaky eigenmodes 
for buried pipes filled with a fluid.  Dispersion curves are presented over a frequency range of 100 
Hz-10 kHz, and it is shown that the fluid has a significant effect on the propagation of the first lon-
gitudinal structural mode.  Moreover, this effect is also influenced by the properties of the surround-
ing medium, which in this case is soil.  This illustrates the strong coupling between each region, and 
in order to solve this problem over an extended frequency range it is necessary to include this cou-
pling in any theoretical model.  Of course, in reality the boundary conditions are not always as sim-
ple as those ones applied here, especially in the coupling between the pipe and the soil, although the 
results presented here suggest that any changes in this coupling are likely to have a significant effect 
on wave propagation. 

The SAFE method provides a flexible and robust approach to find the properties of guided 
waves, however the solution of the governing eigenequation delivers an unordered list of eigenval-
ues.  When one is faced with a complex multi-layered problem such as the one presented here, it is 
a significant challenge to sort and order eigenmodes that are relevant to engineering applications 
such as non-destructive testing and leak detection.  Moreover, the presence of a PML further com-
plicates the issue, and the choice of the properties of this PML can influence the ability of the meth-
od to find the desired eigenmodes.  Accordingly, there is further work to be done to deliver a SAFE 
algorithm suitable for efficiently extracting the relevant eigenmodes, and doing this over an extend-
ed frequency range that includes the ultrasonic region.  This is the subject of ongoing work. 
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