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1. INTRODUCTION

For many applications in musical acoustics, the power spectrum is
a most effective way of describing the component frequencies
present in a sound, together with their relative amplitudes. lt is
derived from the Discrete Fourier Transform (DFT), for which in
practice the Fast Fourier Transform (FFT) is almost universally
employed (simply a special case of the DFT giving efficient
processing in return for a minor constraint on transform size).

The Fourier Transform processes a number of samples, n, taken at
regular intervals over a total time, T, and determines the
amplitude and phase for n/Z calculation frequencies, each being an
integral multiple of the frequency interval 1/7. The output from
the DFT can be considered as n/z 'frequency bins‘ at intervals of
l/T, each containing a calculated sum of the total amplitude of
components lying within a band around its centre frequency.

In the ideal case of a periodic signal where the portion of signal
analysed spans an exact number of cycles of the fundamental, then
the fundamental and its harmonics each lie exactly on a
calculation frequency without affecting others. If this’ ideal
condition is not present, the signal frequencies lie between the
calculation frequencies, causing the analysis to attribute them in
a widespread pattern which varies according to the frequency
mismatch, an effect termed "leakage". The ideal situation is often
unattainable, as the signal frequency may not be known in advance,
or the sample rate may not be adjustable to the precise value.
More importantly, analysis should cope with several signals
combined, at unknown frequencies.

The remedy is to multiply the data time—series by a "window
function" which is-unity in the middle and tapers towards zero at
each end. The Effect is to give a rounded peak spanning several
frequency intervals, with fairly uniform shape regardless of where
the signal frequency lies within the frequency interval, and with
a substantial reduction in the leakage to distant bins. Peak shape
depends on the window function, but for a given function the peak
always spans the same number of frequency bins even when their
width is altered by other factors such as transform size.

At first sight this uniformity might appear to have been obtained
at the expense of severe degradation of frequency resolution. 0n
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closer examination, however, it emerges that the data is not in

fact corrupted randomly but transformed in a rigorously

mathematical form from which it can be recovered by interpolation

to an accuracy better than 12 of a DFT frequency interval.

2. INTERPDLATIUN

The result of the DFT performed on windowed data is the

convolution of the DFT of the window function and the DFT of the
raw data. This mathematical statement unfortunately does not offer

a simple way of recovering the frequency information. Instead an

empirical approach has been developed from careful study of the

characteristics of the output for calibration signals. The term

"interpolation interval" is convenient for the difference between

the true signal frequency and the calculation frequency

immediately below it, as a fraction of DFT frequency interval.

Fig 1 is a montage comparing the DFT line clusters for ten

interpolation intervals at increments of 0.1, in which some

features can be readily distinguished by eye.(the pattern for 1.0

is identical to that for 0.0). The pattern for 0.0 is symmetrical

about a single line, while that for 0.5 is symmetrical about a

pair of lines,- the skewed patterns for below 0.5 are mirror images
of those above 0.5, with the relative line heights changing

smoothly. While an interpolation would be possible using only the

relative heights of the two highest lines, the risk of degradation

by spurious signals is reduced by using differences between the

four highest lines. The three separate estimates are combined with

subjectively assigned weights to allow for the greater risk of

contamination for lower lines. with the preferred window,

straight—line interpolation is adequate for differences 1-2 and

2-3, while a second-order polynomial is used for difference 3—4.
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3. PRUGRAH

3.1 General
The version listed below is in HS GN-BASJC for use on PC. Original

development was in HS BASIC wi th later modifications to suit EEC

Basic. Output is a printed list, providing a worksheet for

subsequent stages of analysis. The dB value of the highest line in

each cluster is an aid for the essentially manual stage of
checking for valid peaks omitted and spurious ones inserted.

3.2 Data Format
The disk file format commences with an ASCII character string for
data description, followed by a sequence of numeric values giving

dB for each element of the DFT output, corresponding to array

indices from zero to (transform size)/2. [The zero element value
is not used in interpolation, but is included in the spectrum file

for other purposes]. The figures for sample rate and transform

size are not read in as data, and the user must enter them when

prompted. (The identifier string can include them as a reminder).

3.3 Program Dperation
The program operates on a power spectrum in dB from a disk file in

two passes, the first identifying lines which stand out from the

background level and the second grouping these lines in clusters

and interpolating a centre frequency for each cluster.

Recognition of prominent lines is based on comparison of the

running mean of three lines with that of the two before and two

after them. If a specified threshold is exceeded, the central line

has a flag set for its subsequent treatment.

In the second pass, a cluster is defined as starting where the

line flags change from zero to one, and finishing where they

return to zero. Within each cluster the highest line is

identified, and the lines before and after it compared to

establish the polarity of interpolation, i.e. whether the centre

frequency is above or below that of the highest line. This result

also defines which line is to be used as the fourth highest.

Three separate interpolations are then performed, on the basis of

height differences from first-to-second. second-to—third and
third—to-fourth lines respectively, and a weighted mean is

derived. As a rudimentary indication of the degree of agreement

between the three interpolated estimates in each case, an
unweighted standard deviation of the three is provided (expressed

as a fraction of frequency interval), and the user is left to
decide whether to accept or reject the value.
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3.4 Program Variants

While the preferred window function is a specific quasi—Gauss

form, an acceptable alternative is the widely-used Hanning

function, for whicha different set of constants and a more

elaborate Interpolation are required in the Interpolation

procedure, lines 360 - 920.

Dmittin'g data transfer and automatic recognition of clusters,

versions of the Interpolation routine have been prepared for

programmable calculator (Hewlett-Packard HP4l, reverse Polish) and

BASIC, to handle single clusters, prompting for input of the

sample rate, transform size, frequency of the highest line and d5

values for the four highest lines.

4. GUALI TY CONTROL

The first level of selection is provided by the choice of

threshold level for line identification, and the ,user may vary

this according to the character of the data. In the final list of

frequencies there is some help in the form of the standard

deviations, but these can be no more than a general guide since

each is derived from combining only three Values.

The most dependable check comes from visual inspection of the

spectrum for uniformity of cluster shape, at a resolution that

enables individual lines to be distinguished. ln most applications

the emphasis is on accuracy and the policy is to discard readings

which fail on any one of the three forms of checking.

5 . WINDOW CDNSIDERATIDNS

The operation of windowing in used in many other differing

applications of Fourier Transform analysis, and it should be

recognised that the desirable properties are by nomeans the same

for each. For present purposes, two features are important: the

cluster outline shape should not vary widely with interpolation

interval, and the leakage to distant frequencies should be low.

Uniformity of cluster shape is needed for visual assessment of

quality, and indeed for some situations where the visual display

is a sufficient end-product, as in teaching musical acoustics. The

mathematical process of interpolation is made more troublesome

(though not impossible) with variability of shape, and the Hanning

function has this drawback as interpolation interval nears zero.

Leakage is important with sounds comprising many components. For

example, low piano notes have more than fifty partials of broadly
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similar amplitudes; if the leakage from each is 40 d5 below thesource level. the combined effect almost swamps the true signals.

The key requirement for low leakage is that the window functionshould go down to zero at start and finish. The exact Gauss
formula does not do so, and is not well suited on this account.However. by good fortune, an approximate Gaussian formula which
arose from computational convenience turns out to be better in
respect of both shape and leakage than any of the standardformulae examined so far. It has the form (in PASCAL):

FDR j .' .1 T0 tsize D0 BEGIN
wx : absHj - tsize/Z - 0.5)/('tsize/2),-
window := sor(sgrt1 - sorflvxlll;

6 . CAL [BRATIDN EXAMPLE

#5 an indication of the accuracy obtainable, the procedure has
been applied to a triangular wave composed of exact harmonics. The
first three columns of the table below are the standard outputlisting. Column 4 gives the harmonic number assigned byinspection, the first three frequencies and the last being due to
mains hum and background noise.

The best estimate of the true fundamental frequency of the signal
is taken as the weighted mean of the five strongest peaks, the odd
harmonics up to 9, and column 6 shows the departure from this for
each harmonic, expressed as a decimal of one DFT interval. In each
case the departure is no more than 17. of an interval.

Centre Highest Standard Harmonic Relative Residual ,
Frequency Line Deviation Number Level interval
50.216Hz ‘12.3d5 sdi.0.0.l46

    

100.230Hz -lé.4d5 sdi. .0057 - 4
l 51 . 302Hz ~27. SdE sdi : 0. 0282 -
1 ?5. 824Hz +30. OdE sd ' . 0007 I 0. OdE -0. 004B
391.509Hz -lO..ldB .0260 2 -40.ld5 -0. 0075
557. SJBHZ 410.3115 sdi:0.001? 3 -19. 7415 -0.0009
733. 415Hz -lé.3d5 sd' .0258 4 -46.Jd3 40.0025
979. ZZEHz ‘1 . SdE sd . 0027 5 '25. 2:13 *0. 0007

1174.971Hz -1'7.ZdB sdi:0. 011‘? 6 -49.2dB -0.0037
1370. 915/42 ~4.ldB sdi :0. 0063 7 -J4.1db +0.0006
1567.054Hz '2J.0d5 sdi.-0,003.1 B -53.0d5 +0.0100
1762. 594Hz '8.8d5 sdi:0.0047 9 -33.Bd5 0.0000
1953.177Hz ‘24.EdB sdi:0.0422 .10 -54.EdE -0.0064
2154.387H2 -13. 7GB sdi:0.0102 1.1 -43. 7dE ‘0.0027
2545.631H2 -19.6dE sdi:0.017€ 13 ~4B.6d5 -0,0064
3392. 533H2 —3.l . ZdB sdi : 0. 0097
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This analysis accuracy corresponds to around 1 part in 65000 for
the highest frequency measured in this example. Musical sounds

containing closely-spaced components present more difficulty than

this triangular wave, but provided the peaks are separated by more
than ten DFT intervals comparable accuracy can he achieved. The

absolute accuracy depends of course on control of the sample rate,
but the use of a_DAT recorder with digital transfer to computer'
reduces timing errors to a negligible level.

7. APPL ICQTIUN EXAMPLES

Fig 2 is a detail from investigations into inharmonicity of piano
strings, showing how observed mode frequencies depart from those

predicted by existing theory. A sound containing some 145 partials
was analysed, and the graph indicates a clear first-order curve,

an order of magnitude greater than the scatter of individual

points about the curve.

Fig Sshous the variation with time for the first three mode
frequencies ofaplucked cello string. The ability to obtain

frequency information from small transforms and consequently short

data segments is valuable in tracking rapidly—changing phenomena.
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APPENDIX: PROGRAM LISTING

C$=”Auto Spectral Freq Interpoln, DUASI GAUSS. R Parks 15.1.93”

  

PRINT cs: PRINT

CLOSE

GUSUB 230: REM (Find spectrum file)
INPUT "Sample Rate, kHz: "; SR
GDSUB 300! RE” (Set Transform SIZE]
N=TS/2: DIM UlN), Z(N), CORD(N): XN=T5/1024: NH=512: LG$=”"
CT=9: REM db diff threshold for cluster recugnitidn
GOSUB 470: REM (Set Threshold)
GOSUB 350: REM (Load spectrum from disc)
GDSUB 520: REM (Prominent line identification)
GUSUB 640: REM (Freq interpolation)
PRINT "HDWZAT?! Another at same parameters?"i INPUT as
EDSUB 230: GDSUE 350: GDSUB 520: BOSUB 640: GUTO 160
INPUT “ Spectrum File: "; LFS
OPEN "I", 1. LF‘: INPUTRI, TS, FFTO: LPRINT ” ”; T5
RETURN ‘
TS=2049: PRINT "Current Transform Size: ";TS
INPUT ' Enter new or <RET> "; TS$
IF T5$=”" THEN 340 ELSE TS=VAL(T5§)
RETURN

FOR I = 1 TO N: REM -——- Load Spectrum from disc file --——
IF EOF(1) THEN 400
INPUTNI, U(I)
NEXT

PRINT" (Data Loaded)”: BEEP: CLOSE “I
RETURN

PRINT "Current db Threshold: ";ET: REM -- Set Threshold --——
INPUT " Enter new or <RET> ”; DB3
IF DB$= ” THEN 510 ELSE CT=VAL£DB$)
RETURN

PRINT " (Scanning for lines)"
PRINT ” FFT lines within clusters:"
FDR l=5 TU N-B
RMF=(U(I-3)*U(l-Z)+U(I*2)*U(l*3))/4:RMC=(U(I-1)+U(I)+U(I¢l))13
IF RHC-RMF>CT THEN 600 ELSE 2(1)=0
GOTD blO
le)=I: PRINT 1;
NEXT: PRINT

RETURN

PRINT: BEEP: REM --—— Auto Freq Interpuln ->--
SP=I

PRlNT " (Scanning for interpoln)”: PRINT
FDR I=SP TD N-a: REM find beginning of cluster
IF 2(I)=O AND Z(l’1)=1 THENBC=I+1= GOSUB 710
NEXT
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RETURN

FDR J=Bc T0 BC+4= REH find and of cluster

IF Z(J)=1 AND Z(J+1)=O THEN SP=J+1: GDSUB 750

NEXT '
RETURN

REF =—100: REM find line no of local max
FOR K=BC-1 TU SF

IF UIK))REF THEN REF=U(K): LHXI=K

NEXT

CDRDl1)=LHXI: REM local max; now find 3 next highest lines

P31: REM polarity of interpoln

IF U(LMXI-1))U(LNXI+I) THEN P=-1

CORD(2)=CDRD(1)*P: CORD(3)=CDRD(1)-F: CORDt4)=CURD(1)+21P

DEL12=UICORD(1))-U(CDRD(2)): REM the three heighi differences

DEL23=UICORD(ZI)-U(CDRD(3))
DEL34=U(CDRD(3))-U(CORD(4))
IF DEL12)4 THEN NINT12=0: SOTO BBO

NINT12=Pt(.5 - DELlZ/B): REM interpoln for 1-2

IF DEL23>B.600001 THEN NINT23=P!.5: GDTD 900

NINT23=PI.OSBIDEL23: REM interpuln for 2-3

IF DEL34(O THEN N1NT34=PI.S: GOTO 930

IF DEL34>15 THEN NINT34=05 EDTD 930

NINT34=Pfltv502-.0365tDEL34+.000184K(DELS4‘2))= REM int for 3-4

W12=10”((U(CURD(2))-U(CDRD(1)))/20)

N23=10‘((U(CDRD(3))-U(CORD(1)))/20)
N34=10‘((U(CURD(4))-U(CDRD(1)))/20!

SUMN=N12 + W23 + W34
N]NTN=(W12ININT12 + NZSININTZS + W34ININT34)/SUHW

CF=(LMXloNINTwllSRKIOOO/TS

MN=(NINT12 + NINT23 + NINT34)/3

SDN=SGRI((NINT12-HN)“2 ¢ (NINT23-MN)”2 + (N1NT34-MN)‘2)/3)

LPRINT: LPRINT ” ‘“

LPRINT USING “MNN“.NMN”; CF;' LPRINT “Hz: "5

LPRINT USING “+«fl.fl"; U(LMXI);: LFRINT “dB. 5di-

LPRINT USING "fl.lflflfi"; SDN;

IF SDN ) .05 THEN LPRINT " ---"; ELSE LPRINT

RETURN

IF DEL12>6 THEN N1NT12=O= GOTO EEO ' Alternative for Hanning

NIN712=PX(.5-.OEb7lDEL12+.OOOObi(DEL12“2)+.OOOOBBI(DELIZ‘S))

IF DEL23>14 THEN NINT23=PI.5: GDTO V00

NINT23=P¥(.0362!DEL23*.0000334‘(DEL23‘2)-.0000148l(DEL23“2))

IF DEL34<0 THEN NINT34=PI.5: GOTD 930

IF DEL34>56 THEN NINT34=O: GDTO 930

NINT34=PI(.502-.OZOS‘DEL34+.00021(DEL34“2)+1.05E-O7fi(DEL34“3J)
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