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The primary goal of this study is to investigate an eduction method aimed at identifying some
non-acoustical properties of porous media; its secondary goal is to improve the characterization
of the effect of an internal flow on porous media acoustics. Porous materials are increasingly used
in exhaust mufflers, acoustic liners and transpiration cooling, with the impact of the flow on their
acoustical behavior having received little attention since the pioneering work of Cummings and
Chang. The determination of their properties (porosity, permeability, tortuosity,...) is of crucial
importance to ensure quality control during the manufacturing process and the knowledge of the
laws predicting their physical behavior. The complex pore micro-topology of porous media al-
lows for a valuable sound attenuation in the audible frequencies via phenomena such as viscous
friction, thermal exchange and frame vibration. This naturally leads to the development of an
acoustical eduction method to retrieve these properties, which are the input parameters of models
yielding equivalent propagation characteristics, in the frequency domain. The experimental ap-
paratus consists in a set of two impedance tubes, allowing measurements up to 6000Hz without
flow, and 1500Hz with flow, where the velocity is kept under 2m/s. The novelty of this study is
to undertake the simultaneous eduction of all the parameters of the JCAPL model in the no-flow
case and to educe the Biot-Allard parameters in the presence of an internal flow. Eduction results
are firstly obtained in synthetic configurations, showing the effectiveness of the present method as
an identification tool and its robustness relative to noise. The proposed method is finally applied
to a foam sample and an analysis of the mean flow effect is conducted.
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1. Introduction

Porous materials are extensively used in a wide range of applications, from geophysics to sound
absorption. The precise knowledge of wave propagation inside systems made of porous media is of
crucial importance and usually requires the use of finite element models based on the Biot’s theory
[1]. Additional to the Biot’s theory are the semi-phenomenological models used to account for the
visco-thermal dissipation of the waves inside the porous medium [2, 3, 4, 5]. The resulting augmented
theory, the Biot-Allard model, can be simplified when considering an immobile frame, resulting in an
equivalent fluid modeling. A certain number of parameters are needed to adequately represent wave
propagation and attenuation in complex porous media: porosity φ, tortuosity α∞, static viscous (resp.
thermal) permeability Π0 (resp. Π′0), viscous (resp. thermal) characteristic length Λ (resp. Λ′), static
viscous (resp. thermal) tortuosity α0 (resp. α′0). While direct measurements can be used to access
individually some of these parameters, certain drawbacks and difficulties of these methods tend to
orient the eduction strategy towards inverse measurements that can possibly yield in a single experi-
ment all the desired parameters, as they all influence the acoustic response of the porous material and
can thus be found by the minimization of a proper acoustical cost function, sensitive to all of these
parameters.
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Another subject of interest lies in the presence of a mean flow inside a porous medium (in exhaust
silencers or combustion chamber porous walls) and its impact on the bulk acoustic properties of the
material. Following [6], it is expected that an increase in the flow velocity will result in an increase in
the material flow resistivity, indicating the appearance of an additional inertial drag.

However, Cummings model rests on a parallel fiber theory that fails to predict all the complex
interactions that the Biot-Allard model is capable of predicting in the case of complex pore shapes
and non rigid materials. It is expected that some other parameters might be changed by the addition
of a flow. Thus, the eduction method can be used to identify the new values, obtained in the presence
of a flow in order to yield more accurate prediction capabilities in these configurations.
To investigate the aforementioned issues, the present article is organized as follow: Section 2 details
the equivalent fluid model and the two experimental devices; the eduction method follows in Sec-
tion 3; the impact of an internal mean flow is studied in Section 4 and the properties are yet again
educed with the tools described in the previous Sections. Concluding remarks are laid out in Section 5.

2. Acoustics of porous materials

2.1 The equivalent fluid model

In the simplified case where the porous solid phase is assumed rigid, only airborne waves propa-
gate in the material. The contribution of the solid phase to the acoustics is negligible and one can see
the porous medium as an equivalent fluid subject to visco-thermal losses due to the high surface con-
tact ratio between the fluid and solid phases and to the complex shape of the pores. Following [7] and
assuming total decoupling between visco-inertial and thermal effects, one obtains the complex-valued
Helmholtz equation:

∆p+ ω2 ρ̃eq

K̃eq
p = 0 (1)

where a tilde indicates a complex frequency-dependent property, p is the interstitial pore pressure, ω
is the pulsation, ρ̃eq is the equivalent density of the fluid disregarding thermal effects and K̃eq is the
equivalent bulk modulus of the fluid disregarding viscous effects. Semi-phenomenological models for
ρ̃eq and K̃eq can be obtained for different simplified pore geometries by using the limits of low or high
frequency regimes, where the fluid is fully viscous-isothermal or potential-adiabatic, respectively.
Using the model of Johnson, Champoux, Allard, Pride and Lafarge (JCAPL) [2, 3, 4, 5], one has ρ̃eq =

ρ̃eq (φ, α∞,Π0,Λ, α0) and K̃eq = K̃eq (φ,Λ′,Π′0, α
′
0) (see [8, p. 83-84] for full expressions). Some

insight into the model parameters are now given: φ is the material porosity and represents the volume
fraction of air in the material, ranging from 0 to 1 and typically very close to 1 for foams used in
acoustic insulation; α∞ is the tortuosity, a value larger than 1 representing the apparent increase in
the equivalent fluid density due to the dispersion of the microscopic velocity inside complex pores,
in the high frequency limit; Π0 is the static viscous permeability (unit m2), an intrinsic material
property related to the flow resistivity σ0 by the relation Π0 = µ/σ0, where µ is the fluid dynamic
viscosity; Λ is the viscous length (unit m), it was introduced in [2] and represents an equivalent
hydraulic radius of the smaller pores, where viscous effects dominate; Λ′ is the thermal length (unit
m), it was introduced in [3] and represents the equivalent hydraulic radius of the larger pores, where
thermal effects dominate; Π′0 is the static thermal permeability (unit m2), introduced in [9] as the
thermal counterpart of Π0 and links the excess temperature in a pore to the pressure variation; α0

is the static viscous tortuosity, an inertial factor introduced in a different form by [4] and corrected
by [5], it represents the apparent increase in the equivalent fluid density due to the form drag in the
low frequency limit when the pores have constrictions ; α′0 is the static thermal tortuosity, introduced
as a shape factor by [4] and further corrected in [5] to adjust the bulk modulus values in the low
frequency range when the material pores have constrictions. The aforementioned notion of low and
high frequency is material dependent and differs for viscous (fν) and thermal (fτ ) effects as follow:
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fν =
φν

2πΠ0α∞
, fτ =

ν ′

2πΛ′2
, (2)

with ν the air cinematic viscosity and ν ′ = ν/Pr, Pr being the Prandtl number.
To efficiently model the wave propagation inside a porous material, one has to know the above-

mentioned parameters and their impact on the acoustic response of the material. The eduction method
consists in using the latter to infer the former. We proceed by first describing the experimental devices
used in this work to acquire the information used to educe the parameters in Section 3.

2.2 Impedance and transmission tubes

Two experimental devices are used in this study, as shown in Fig. 1. The first one is an impedance
tube, used to measure the reflection coefficient of a material placed above a rigid backing (for which
the reflection coefficient is known), thus obtaining the surface impedance of the material as defined
by Zs = p/v with p (resp. v ) the pressure (resp. the normal velocity) just in front of the material. The
experimental apparatus consists of a 38 mm diameter tube, equipped with two microphones (whose
in-between distance can be adjusted), allowing the measurement of the surface impedance in the
200− 6000 Hz range (plane wave hypothesis).
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Figure 1: Impedance tube (left) and transmission tube (right) experimental set up

The second experimental device consists of a transmission tube of square cross-section where it
is possible to generate a flow up to approximately 2 m/s passing through a porous material, superim-
posed with acoustic waves. The pressure measurements at four locations yield the Transfer Matrix
[10] linking the pressure and velocity on both sides of the material, up to a frequency of 1500 Hz
(plane wave hypothesis). The Transfer Matrix T can be measured with only four microphones and
one termination condition in the case of an isotropic material, yielding:

T =

(
T11 T12
T21 T22

)
=

 cos
(
k̃eqd

)
jz̃eq sin

(
k̃eqd

)
jz̃−1eq sin

(
k̃eqd

)
cos
(
k̃eqd

)  , (3)

where k̃eq = ω/c̃eq is the equivalent wave number, c̃eq =
√
K̃eq/ρ̃eq is the equivalent speed of sound

and z̃eq = ρ̃eqc̃eq is the characteristic impedance of the material. If we now suppose the material to be
rigidly-backed, we can obtain the dimensionless surface impedance (−jωt convention, [8, p. 19]):

Zs = −jz̃eq cot
(
k̃eqd

)
/Z0, (4)

with d the width of the material and Z0 ≈ 420 kg.m−2.s the impedance in free air. One can note that
this surface impedance is directly retrieved with: Zs = T11/T21/Z0, so this is the only quantity we
will be discussing hereafter.
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3. Eduction method

3.1 Principle of the method

The eduction method has for sole purpose the inference of a set of parameters describing the ho-
mogenized properties of the materials from a finite number of measured acoustic signals related to
the material, such as its surface impedance. The global methodology is now described.

• The surface impedance of a sample can be measured in a certain frequency range, with either
of the apparatuses described in Section 2.2. Different experiments, performed on the same
material, could be used to increase the available information provided by the data space, for
instance by putting an air gap behind the material [11], by using different sample widths or
by performing some prior direct measurements of readily accessible material properties, such
as its porosity. A cost function J is then defined as the discrete sum on the frequencies under
scrutiny ωi of the squared distance between the q measured signals and the ones stemming from
the modeling, taking as input the parameter vector θ = (φ, α∞,Π0,Λ, α0,Λ

′,Π′0, α
′
0)
t to be in-

ferred. We can write the dimensionless cost function as:

J (θ) =
∑
q

∑
ωi

|Zs,meas(ωi)− Zs,model(ωi,θ)|2 /
∑
q

∑
ωi

|Zs,meas(ωi)|2 . (5)

• The cost function J is then minimized with respect to θ using a Differential Evolution algo-
rithm [12], a stochastic direct search method well-suited to non-linear multi-modal cost func-
tions and global minimization tasks. It consists in the generation of populations of points in
the model space, that are evolved through mutation and crossover operations. The best candi-
dates are then selected with a greedy criterion in order to yield better-suited populations, until
convergence is obtained. No initial guess is needed, as the first population is randomly gener-
ated in order to cover the model space, which renders the algorithm quite useful when no prior
knowledge of the material is available.
• To evaluate the relative precision of the obtained parameters, a local sensitivity analysis is

performed around the minimum of the cost function.

3.2 Eduction results

3.2.1 Synthetic case

First, the eduction process is applied to the simulated synthetic data of a material inside an
impedance tube for frequencies in the range 200−6000 Hz, representative of the black foam that
is experimentally tested in Section. 3.2.2. A set of parameters θi,0 is chosen with values taken as
the ones directly measured for the black foam under study (except for α0 and α′0, which are taken at
random), and the JCAPL model is used to calculate the corresponding surface impedance Zs,0, for a
35.9 mm width material. A white noise is then added to the impedance to take into account errors
in both the measurements and the modeling (observational and modeling uncertainties are combined
by addition of their covariance operators when using a Gaussian assumption [13, p. 35-36], which
justifies the encompassing of both errors into the same white noise). The noise amplitude is set to
εZ0, where ε is the noise ratio. The educed parameters θ̌i are shown in Table 1 for two noise levels
(ε = 0.2 and ε = 0.5).

Despite the high noise added to the synthetic measurements, the eduction provides most of the
parameters with a good accuracy. Exception is made for the thermal parameters Λ′, Π′0 and α′0 at the
highest noise level. For the considered foam, we obtain with Eq. (2) fν ≈ 357 Hz and fτ ≈ 301 Hz,
which might explain why the eduction fails to correctly identify these parameters when the noise ratio
is high: the lower limit of 200 Hz we imposed on the frequency range is too high to allow the present
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Table 1: Synthetic configuration eduction results
θi φ α∞ σ0 Λ Λ′ Π′0 α0 α′0

Units / / N.s.m−4 µm µm .10−10 m2 / /
θi,0 0.96 1.14 3100 230 307 142 1.5 1.3

θ̌i, ε= 0.2 0.96 1.13 3170 213 321 139 1.47 1.28

θ̌i, ε= 0.5 0.98 1.11 3260 164 537 242 1.46 1.73

cost function to “see” much influence of Λ′, Π′0 and α′0. However, it is interesting to note that for
lower noise ratios, these parameters seem well-estimated despite having no access to measurements
at very low frequencies.

3.2.2 Black foam

The eduction method is now applied to the experimental results obtained with the black foam
(namely, its surface impedance). Results are shown in Table 2 and in Fig. 2. We can see the excellent
match between the educed parameters and the measurements, while there is a significant difference
with Zs,0 , the impedance calculated using the directly measured parameters. It is shown that the
present method of identification yields a set of parameters that allow a better representation of the
acoustic behavior of the material. Most of the disagreement between these two curves is shown to be
driven by the viscous length parameter Λ, which varies from the directly measured value by around
30%.

Table 2: Black foam eduction results (same units as in Table 1)
θi φ α∞ σ0 Λ Λ′ Π′0 α0 α′0
θi,0 0.96 1.14 3100 230 307 142 N/A N/A
θ̌i 0.958 1.166 2897 155 298 129 1.46 1.43

Mismatch 0.2% 2.3% 6.5% 32.6% 2.9% 9.2% N/A N/A
Bounds 0.95-0.97 1.16-1.17 2840-3000 152-158 281-355 108-136 1.46-1.48 1.36-1.55
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Figure 2: Black foam impedance fit

A local sensitivity analysis is then performed by varying the parameters around their educed value.
By setting a limit at 0.1% of the dimensionless cost function, we can give lower and upper bounds for
the parameters, as summarized in the last line of Table 2. The narrower the bounds, the more sensitive
the parameter. The most influential parameters, relatively to the cost function, are φ, α∞, σ0, Λ and
α0. It is notable that in this case, the cost function appears very sensitive to α0, whereas this parameter
is often neglected in the literature (mostly because it is hard to measure). A global sensitivity analysis
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[14] should be performed to investigate with further details the phenomenon, which is most likely
related to the low value of the flow resistivity, indicating that form drag could be dominant in a larger
frequency range.

4. Influence of an internal mean flow on poroelastic media acoustics

4.1 Preamble

The goal of this section is to describe the influence of an internal flow on porous media acoustics.
Following [6], it is expected that the flow resistivity be increased by an inertial factor σi, as:

σtot = σ0 + σi |v| , (6)

where v is the bulk velocity. The novelty of this study is to inquire the validity of this assumption in
the more general context of the Biot-JCAPL model (the Biot-Allard model in which the extensions
of Pride and Lafarge are taken into account), by means of an eduction method applied to dedicated
experimental results.

4.2 Experimental setup

A square section transmission tube is adapted as depicted in Fig. 1 to superimpose a bulk flow of
maximum velocity 2 m/s with acoustic waves, generated in the frequency range 200−1500 Hz. A
10 cm large melamine foam is placed in the test section, its transfer matrix is measured for different
flow speeds and the corresponding surface impedance is extracted with Eq. (4). The material, clamped
to avoid being ejected while subjected to a mean internal flow, displays a different behavior from that
of an equivalent fluid, namely, the presence of a peak in the real part of the impedance, when the
reactance is zero. This peak is usually explained by the existence of a λ/4 resonance of the frame-
borne wave [8, Chap. 6] and is related to the material stiffness and density. To palliate the modeling
shortcomings, the full Biot-Allard model is used in this section. As it is not in the scope of this study
to detail such a model and educe the 3 supplementary elastic properties of the material (namely, the
shear modulusN , the damping factor ηs and the Poisson ratio νs), we will not delve into the full detail
of the implementation; it suffices to know that the shear modulus and the Poisson ratio characterize
the stiffness of the frame, while the damping factor allows the shear modulus to take complex values
to account for elastic dissipation: Ñ ← N(1 + jνs). The same eduction strategy as in Section 3
is followed. Due to the low frequency range considered in this study, it is not expected that high
frequency parameters be too influential and it is thus not expected that the eduction provides accurate
results for them. As our focus is on the low frequency range, this is not too detrimental. Hereafter, we
fix a certain number of parameters, as given by the eduction when there is no internal flow: φ = 0.97,
α∞ = 1.4, σ0 = 16400 N.s.m−4, Λ = 39µm, Λ′ = 70µm, Π′0 = 11.10−10 m2, α0 = 1.53 and α′0 = 2.
The only parameters that were allowed to vary between the three eduction processes were the flow
resistivity σtot and the elastic parameters (N , ηs and νs). Direct measurements were conducted by
means of static pressure probes to access the foam flow resistivity at different bulk velocities ranging
from 0 to 2 m/s, yielding σ0 ≈ 17700 N.s.m−4 and σi ≈ 2600 N.s2.m−5. It should be noted that the
goal of this section is not the precise identification of the parameters, but the study of their evolution
in the presence of an internal mean flow.

4.3 Eduction with flow

Experimental measurements of the impedance, along with the impedance calculated with the
educed parameters are shown in Fig. 3. Three mean flow values were tested, by varying the mass flow.
It can be observed that the tendency for both the real and imaginary parts of the surface impedance

6 ICSV24, London, 23-27 July 2017



ICSV24, London, 23-27 July 2017

are well-reproduced by the impedance model, which proves the effectiveness of the eduction method.
In Table 3, the eduction results are displayed, along with the direct measurement performed for σi.

θi σi(N.s
2.m−5) N (Pa) ηs νs Kc(Pa)

Direct measure 2600± 100 N/A N/A N/A N/A
θ̌i, v = 0 m/s N/A 5.64.105 0.132 0.012 1.14.106

θ̌i, v = 0.93 m/s 2883 5.41.105 0.143 0.014 1.1.106

θ̌i, v = 1.62 m/s 2975 5.41.105 0.138 0.009 1.09.106

Table 3: Eduction results for the foam with internal mean flow

A satisfactory accordance can be found between the educed σi and the measured one, showing
the effectiveness of the method in the identification of this parameter. When the flow is increased,
the inertial factor σi is almost constant, which proves the validity of the linear law Eq. (6). Another
interesting phenomenon is the shifting of the impedance peak towards lower frequencies along with
its narrowing, when the bulk flow velocity is increased, as seen in Fig. 3 in the 600−800 Hz range.
The parameter most related to this behavior is believed to be the elasticity coefficient of the frame
in vacuum Kc = 2N(1 − νs)/(1 − 2νs). It is apparent than an increase in the internal mean flow
velocity tends to reduce Kc (even if it becomes less marked as the velocity increases), resulting in
the displacement of the impedance peak. The sensitivity of ηs was found to be low in this case,
and no clear conclusion could be drawn regarding its value. Further studies should be conducted
to investigate this phenomenon with more details, as only one foam sample was available for this
experiment.
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Figure 3: Surface impedance of a melamine foam with internal mean flow variation

5. Conclusion

The present study has discussed an eduction method aimed at identifying porous media properties
represented by either an equivalent fluid (JCAPL model) or the full Biot-Allard model, showing the
robustness of such a method. The eduction was first conducted on a synthetic case, before it was tried
on a real experiment for a highly porous foam with low resistivity, where the impedance appeared
very sensitive to the low frequency limits of the viscous dynamic tortuosity, α0. The impact of an
internal mean flow on porous media acoustics was investigated with a melamine foam sample, for
two different flow velocities. As the foam was structurally constrained, a behavior different than that
of an equivalent fluid model was observed, and the Biot-Allard model was used to educe the properties
of the material in the presence of an internal mean flow. The increase in the flow velocity was shown
to have two main impacts: the flow resistivity of the material was increased, following Cummings
theory, and the elasticity coefficient of the frame was decreased, shifting the impedance peak towards
lower frequencies and narrowing it. These results show that for such a poroelastic material, even low
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velocities are sufficient to induce a different acoustic behavior. These results should be confirmed for
a larger panel of flow resistivity.
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