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ABSTRACT

'All-pole modelling of spectra based on the use of Levinson's algorithm

has several advantages including: the algorithm solves linear equations and

thus is relatively fast; an error measure is produced at each iteration of

the algorithm; the resulting estimate or model is minimum phase; the model

reproduces the given data and results in high resolution estimates. These

properties have made the Burg procedure for all-pole modelling a very useful

and often used spectral estimator. The purpose of this paper is to present

an Autogregressive-Moving Average (ARMA) model with the same kinds of

properties as the Burg procedure. The intent is to develop an ARMA’ model that

is more efficient in estimating certain classes of spectra, e.g., spectral

envelope. containing deep valleys.

Introduction

We shall present the theory and simulation results for an N pole, M zero

ARMA (N,M)‘estimator that is based on the repeated use of Levinson's

algorithm. As in the Burg procedure, an error measure is produced at each

iteration stage. By monitoring this error one can obtain an indication of

the order needed for the estimator. The resulting model is minimum phase

and results in "high resolution" estimates of spectra.

ARMA models usually fall into one of two categories. The first class

includes those which estimate the numerator and denominator coefficients \

simultaneously. This class of ARM]! estimators results in a system of

equations for the coefficients which are nonlinear. The second class
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estimates the numerator and deonominator coefficients separately. These

estimators are characterized by systems of linear equations.

The ARMA estimator presented here is based on linear prediction concepts.

The pole-zero parameters are calculated separately and recursively. The

method is similar to Burg's procedure [1] in that we can increase the model

improvement in the approximation. The algorithm allows one to calculate the

numerator and denominator of the ARMA model in a variety of ways. For an

ARMA (N,M) estimator we can initiate the process with, say, N = 1 and M = 0.

This single-pole approximation is the first step in the algorithm. One can

now add one or more zeros, followed by one or more poles. At any stage of

the process one can also iterate holding the numerator and denominator orders

constant. We have no theoretical results that define the best path to a

given model order (N,M). Empirical results indicate that the addition of a

single pole and zero at each iteration yields the best final ARMA model.

The essential calculation required in the algorithm is the computation

 

of the autocorrelation coefficients of the polynomial -given the auto-
p(z)

correlation values of p(z). This problem cannot be solved with a finite

algorithm. The remainder of the ARMA algorithm is a repeated use of Levinson's

algorithm.

Description of the Algorithm

2
. .

Let lH(z)[ be a power spectrum defined on lzl = 1. We deSire to find

an approximation of the form
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The process is initiated by choosing a constant f1 and a first (or higher)

order monic polynomial P1(z) via Levinson's algorithm so that
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1 is a single-pole approximation to IH(z)I. That is
P1(z) I .

A .

IH1(z)I = IP1(Z)I = IH(z)I

If ‘the approximation were exact, then

f

lam: ml = 1
1

f1
In general. does not equal unity but rather some residual error.

1

The algorithm continues by choosing a zero to match the residual error. Thus

we choose a constant e1 and monio first (or higher) order polynomial Qltz)

e
l l . . . 1

91(Z)I 1.5 an all-pole approXimation to the residual I——-—-H(Z)P1(z)l .

That is, cal/91(2) is chosen so that

 

so that I

91(2)

e

 

I ; ——1——|H(2)Pl(z)
1

At this point the approximation to the original spectrum is based on

I‘ I ‘ l 91”)“(2) = .——_

I e1P1(z)
I = IH(z)|

The iteration process continues by choosing a second (or higher) order

monic polynomial P2 (2) to replace P1(z). Thus we calculate f2 and 132(2) '50

H12) I .
91(2)

 

that Ifz/P2(2)I is an all-pole model for I

————l‘ lH(z)P2(z) '

Then (22 and 92(2) are

found to approximate I

We can summarize the algorithm as follows:

(1) Set Poiz) = 90(2) = 1..

  

. f .

(2) Choose fk and Pk(z) so that IP lial is a k-pole approximation

k
th)

to l——-l
Qk-1(z) ek

(3) Choose e and Q (z)'so that I I is a k-pole approximation to
k k thzl Q (2)

l " k|—-—|. Then a (z) = —— .
H(z)Pk(z) k ekPk(z)

8.3

  



 

Proceedings of the Institute of Acoustics ‘Spectral Analysis and its Use in

Underwater Acoustics’: Underwater Acoustics Group Conference, Imperial

College, London, 29—30 April 1982

We have outlined the algorithm in terms of polynomials in z. The

calculations are actually performed in the sequence domain using the

corresponding correlation sequences. The k-pole approximations in steps (1)

and (2) are obtained«by Levinsonis algorithm. This implies we musthave the

correlation coefficients for H(z)/Qk_1(z) and l/H(z)Pk(z). The primary

computational problem is to obtain these correlation sequences. This calcula—

tion, in turn, reduces to finding the correlation sequence of a polynomial

 

5(2) given the correlation sequence of 512). We call this the “inverse

problem".

One method of solving the inverse problem is to use Levinson's algorithm

to find an all-pole model l/A(zl for 5(2). Then A(z) is an approximation for

l/S(z). Now convolve the coefficients of A(z) to find a correlation sequence

for 1/s(z) .

Some Results

We have used the algorithm on a variety of spectra. In Figure 1 is

shown a spectra characteristic with deep valleys and peaks. The ABMA method

of the correct order matches the true spectrum reasonably well. In comparison

an all-pole model of order M+N cannot approximate the deep valleys. The

variance of the AEMA estimator based on overlaying several estimates is with

20% of the single realization shown.

In Figure 2 we used the algorithm to estimate sinusoids in additive

white noise. These results are comparable to using the Burg procedure. The

only advantage the ARMA procedure has is perhaps a little better definition

at the very low signal—to—noise ratios. .

Summary

We have developed an iterative, ARMA spectral estimator based on the

repeated use of Levinson's algorithm to estimate both poles and zeros. The

iterative nature of the model allows us to nonitor the degree of approximation
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and thus obtain some measure of order_estimation. Good results are obtained

for estimating spectra with deep spectral enVelope valleys and peaks.
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