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ABSTRACT

"All-pole modelling of spectra baéed on the use of Levinson's algorithm
has several advantages including: the algorithm solves linear equations and
thus is relatively fast; an error measure is produced at each iteration of
the algorithm; the resulting estimate or model is minimﬁm phase; the model
reproduces the given data and results in high resolution estimates. These
properties have made the Burg procedure for all-pole modelling a very useful
and often used spectral estimator. The purpose of this paper is to present
an Autogregressive-Moving Average (ARMA) model with the same kinds of
propertles as the Burg procedure. The intent is to develop an ARMA’ model that
is more efficient in estimating certain classes of spectra, e.g., spectral
envelops_containing deep valieys.
Introduction

We sﬁall present the theory and simulation results for an N pole, M zero
ARMA (N,M) estimator that is based on the repeated use of Levinson's
algorithm. As in the‘Burg procedure, an error measure is produced at each
iteration stage. By monitoring this error one can obtain an indication of
the order needed for the estimator. The resulting model is minimum phase
and results in "high resolution“.estimates of spectra.

ARMA models usuvally fall into one of two categories. The first class
includes those which estimate the numerator and denominator coefficients
simultaneously. This class of ARMA estimators results in a system of

equations for the coefficients which are nonlinear. The second class
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estimates the numerator and deonominator coefficients separately. These
estimators are characterized by systems of linear egquations.

The ARMA estimator presented here is based on linear prediction concepts.
The pole-zero parameters are calcplated separately and recursively. The
method is similar to Burg's procedure {1] in that we can increase the model
order of the numerator and denominator at each recursive step and monitor the
improvement in the approximation. The algorithm allows one to calculate the
numerator and denominator of the ARMA model in a variety of ways. TFor an
ARMA (N,M) estimator Qe can initiate the process with, say, N = 1 and M = 0.
This single-pole approximation is the first step in the algorithm. One can
now add one or more zeros, followed by one or more peles. At any stage of
the process one can also iterate holding the numerator and dencominator orders
constant. We have no theoretical results that define the best path to a
given model order (N,M). Empirical results indicate that the addition of a
single pole and zero at each iteration yields the best final ARMA model.

The essential calculation reguired in the algorithm is the computation

of the autocorrelation coefficients of the polynomial - given the auto-

1
‘ p(z)
correlation values of p{z}. This problem cannot be sclved with a finite
algorithm. The remainder of the ARMA algorithm is a repeated use of Levinson's

algorithm.

Description of the Algorithm

Let [H(z)"2 be a power spectrum defined on Lzl = 1. We desire to find

an approximation of the form

H (2) =g, y - 1 Pg =9 =1

The process is initiated by choosing a constant fl and a first (or higher)

order monic polynomial Pl(z) via Levinson's algorithm so that
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IP (z)
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[ is a single-pole approxlmatlon to lH(z)]

| = |u@2)]

If the approximation were exact, then

In general, ]

£
1
|

H(z)Pl(z)

f)

H(z)PI(Z)

=1

That is

The algorithm continues by choosing a zero to match the residual error.

we choose a constant e

so that l

That is, elel(z) is chosen so that

Ql(z)

1

1

€

I
H(z)Pl(z)I

|15 an all-pole approxlmatlon to the residual I;ﬁ'};;“agf

1

At this point the approximation to the original spectrum is based on

[H(z)l = |

e, P (2)

| = |82} ]

| does not equal unity but rather some residual error.

Thus

and monic first (or higher) order polynomial Q (z)

The iteration process continues by choosing a second (or higher) order

monic polynomial P,(z) to replace Pl(z).

that |f2/P2(z)| is an all-pole model for |

found to approximate |

__L..__l
H(z)P, (2) )

H{z) | .
Ql(z)

We can summarize the algorithm as follows:

(1)
(2)

(3)

Set Po(z)

Choose £, and Pk(z) so that IP

to |

k
H(z)

-1

Choose e

k
1

H{z)P (z)

(2}
e,
and Qk(z) so that |Q = )I is a k-pol

= Qo{z) = ]__'
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Then H (z) =

Then e

2

Tz)l is a k-pole approximation

Thus we calculate f2 and P2(z) s0

and Qz(z) are

e approximation to

Qk(z)

e P (z)

k'k
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We have outlined the algorithm in terms of polynomials in z. The -
calculations are actuallyt performed in the sequence domain using the
corresponding correlation sequences. The k-pole approximations in steps (1}
and (2) are obtained.by Levinson's algorithm. This implies we must have the
correlation coefficients for H(z)/Qk_llz) and 1/H(z)Pk(z). The primary
computational prcblem is to obtain these correlation sequences. This calcula-

tion, in tyrn, reduces to finding the correlation sequence of a polynomial

S:Q) given the correlation seguence of S(z). We call this the "inverse
problem".

One method of solving the inverse problem is to use Levinson's algorithm
to find an all-pole model I/A(zi for S{z). Then A(z) is an approximation for
1/5{z). Now convolve the coefficients of A(z) to find a correlation sequence
for 1/5(z).

Some Results

We have used the algorithm on a variety of spectra. 1In Figufe lis
shown a spectra characteristic with deep valleys and peaks. The ARMA method
of the correct order matches the true spectrum reasonably well. In comparison
an all4pole model of order M+N cannot approximate the deep valleys. The
variance of the ARMA estimator based on overlaying several estimates is with
20% of thersingle rea;ization shown.

In Figure 2 we used the algorithm to estimate sinusoids in additive
white noise. These results are comparable to using the Burg procedure. The
only advantage the ARMA procedure has is perhaps a little better definition
at the very low signal-to-noise r;tios. .

Summary

We have developed an iterative, RRMA spectral estimatorrbased on the

repeéted use of Levinson's algorithm to estimate both poles and zeros. The

jterative nature of the model allows us to monitor the degree of approximation
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and thus obtain somé measure of order estimation. Good results are obtained
for estimating spectra with deep spectral envelope valleys and peaks.
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