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NOMENCLATURE

vector of constants.
structural geometric stiffness matrix.
structural degrees of freedom.
eigenvalue (-= (frequency x 211:) :- for non-

huckling calculations)
structural massmatrix.
transform polynomial.
displacement polynomial.
structural stiffness matrix.
assumed displacement function.
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INTRODUCT ION

This work reports an investigation of a family of non-conform-
ing, thin, plate bending elements. The elements have four, eight
or twelve nodes (Fig. l). and three degrees of freedom at each node.
The freedoms present, at each node, consist of: a single transverse
displacement and two rotations about lines which are perpendicular
and lie in the plane of the element.

The choice of geometric nodal displacements implies that the
elements may be used in a complex practical engineering problem.
Stiffeners and in-plane elements may be superimposed, easily, to
idealise very general, stiffened , folded plate structures. The
results presented here refer only to plates of constant thickness
but the program suite used2 allows the use of elanents of variable
thickness. The four node element may take a non rectangular shape
and the eight and twelve node elements may have curved sides. One
of the objects of this work is to determine variations in accuracy
as the elements are distorted from a basic rectangular shape.

FORMULAT ION

Element axes, x, y, are set up in the plane of each element in
a structure (Fig. 1). To facilitate subsequent integrations, the
element is mapped into a unit square in the E11 plane. The trans-
formed nodes are equispaced on the peri hery of the unit s uare.
The E1} to x y transform is defined by: x y] = [flfiuLim 3. For
the for node element: P =[l § 11 . Additional terms:
£2.11 5% and n2: are us .-d for the eight node element, and

further terms: g 3, 113 537' and’lsg are used for the twelve node
element. '



An assumption is made, in terms of E and
deflection of the element as follows: w = [Pt] {5'} where {a} is
a set of constants which may be expressed in terms of the nodal dis-
placements. Por the four node element:

[1"]=[1§115n :1 112 £211 £112 :3 1135311 11’s.?“
the eight node element the following additional terms are used:

11“, 2",115, 5M3: 511223.11“: .11 :“m‘zzng‘nnsg HI?“
and for the twelve node element we include the further terms:

:6, 11 6, t7. 11 7, E6113. E3115. 5 Zn.§n7,§"n3 , E311“.§5T.3.§’115 .
The bending strain energy, energy due to applied in-plane loads and
kinetic energy are calculated at points on the element using the
assumed displacement, w. Integration. using the Gaussian numerical
method", provides the three energies. above, for the whole element.
The energies are now differentiated. with respect to the nodal dis—
placements upon which they depend, to yield stiffness, geometric
stiffness and mass matrices for the element. The element matrices
obtained are merged into three matrices which refer to the whole
structure. Vibration problems reduce to the eigenvalue problem:

[[5] + , [a] + name} =0“. which is
solved to yield )\ and normalised

A large structure may have thousands of degrees of freedom and
be impractical to solve, on present computers, in that form. In
such a case continuous reduction5 of degrees of freedom is necessary
to keep the number of degrees of freedom to fewer than one hundred.

The displacement function used is not capable of defining all
constant strain states“. To remedy this omission it is necessary to
include: the terms: g 2-,, Z in the four nodecase: g 2 112 and

§37| 3 in the eight node case and :27! 2, E 67! 2,§Z"I 5,§37| 3 and
£511“ in the twelve node displacement function. The inclusion of
these terms will imply extra degree; of freedom in each element.
These might be removed by reduction before the element is merged
into the structure.

RESULTS

The following list gives some of the tests made. A selection
of the results obtained is included in this summary.

1. All elements were tested, in various meshes, on a square,
simply-supported plate. For examples see Figs. 2 and 3.

Z. The four node element was used to obtain the monoaxial
buckling stress of a square. simply-supported plate with
various meshes.

3. The frequencies of a square simply-supported plate were
found for different meshes; with the plate subject to an
in-plane load. The results are given in Fig. A.

In. The natural frequencies of a circular plate were found using
the twelve node element.
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Fig. 1

The Elements in the x’ z Plane showing the Axes
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M and N are the number of nodal lines perpendicular to the
x and y directions. respectively.
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Fig. 2

VARIATION OF NATURAL men‘s m SYHHEIRIC MODELS OF A S HARE.
SIMPLY-SUPPORTED PLATE AS THE MESH IS VARIED. TEE IDEALISATIONS USE
FOURl TWELVE NUDE BENDING ELEMENTS AND SIXTY MERIT-S OF FREEDOH. ALL
RUIATIONAL WMS HERE REDUCED OUT LEAVING TWENTY TRANSVERSE FREE—
DOMS AT THE SOLUTION STAGE.

TESTS HERE MADE ON A QUARTER OF THE PLATE. THE CURVE-MODE RELATION
IS DEFINED IN FIG. 2. l

'I- ERROR IN —— _ .
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31mm FIRST WCY AND THE UNIFORM HONOAXIAL (X-DIRE-
T Ill—PLANE STRESS ON A DARE SDfPLYqSU'PPOR‘I‘ED PLA .

HISHIS HIRE TRIED: EACH USING FOUR mun NDDE BENDING

 

W5 AND 'l'leL-VE DEXEHEE‘S 0F FREEDOM
THE DISTORSION IS DEI‘DI'ED IN FIG. 2.    
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(00 = EXACT FIRST FREQUENCY)

(u = COMPUTED FIRST FREQUENCY)

(cro = EXACT Fmsm CRITICAL STRESS)

(U‘ = APPLIED STRESS)    
 


