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Introduction

A bearing estimation method is proposed that is intended for a rigid frame comprising several
omnidirectional sensorsI with the objective being to localise signals by determining their angle of
arrival with respect to the array. It is then shown how the necessary computation can be reduced
significantly

It is assumed that the frequency of interest is known, enabling the inter—sensor spacing to be set at
half a wavelength. Some preprocessing is assumed, specifically that the continuous time histories
of the acoustic pressure fluctuations have beensampled and digitised prior to a Fast Fourier
Transform (FFT) being carried out. With the assumption that the sampling rate is such that the
frequency of interest (assumed to be known) coincides exactly with one of the FFT coeificients it
is possible to ignore all the FFT coefficients except the one pertaining to that particular frequency.
These coefficients, one for each sensor, represent the phase of the original signal as it passes each
sensor in turn, and taken as a group constitute what is called one snapshot. Many snapshots are
taken, each one from a different FFT, and combined to form the sampled data covariance matrix.

It is this matrix that is the starting point for the main processing.

Data representation _

It is assumed that the signal wavefront is planar with the perpendicqu distance between the
wavefronts at two adjacent sensors being dsinfl for a signal with an angle of arrival of 9 and an

array with an inter-sensor spacing of d. The steering vector is AT = (e-“Ke”. "flip-1") for an

array with p sensors where d: = mg. When multiplied by the complex amplitude of an incoming
signal with abearing of 0 this steering vector gives the array's response. It is assumed that the
phase for each snapshot is randomly different, thus sensor 1: receives sin(wt + A + k¢) where A

is a random variable, uniformly distributed in the range 0 to 2!. The output of sensor k is thus

’—.",'i [em‘fl‘ll It is not necessary to know how many samples there were in each snapshot since it

is assumed that the outputs have been normalisedI i.e. the term —nj/‘2 has been eliminated.

If the two signals are coherent, we add a random phase to each of them to imitate the process

of taking a snapshot, each snapshot having a difierent phase addition. If the two signals are
‘uncorrelated', not only do we add this random phase to represent the arbitrary beginning of each
sampling period. but we also add a random phase to one of the signals to represent its being
delayed or advanced. The complete output vector for an array receiving two signals would he

PMCJDA. Vol 15 Pan 3 (1933) ' 823   



 

Proceedings of the Institute of Acoustics

HIGH RESOLUTION BEARING ESTIMATION

given by
em

2 = [hivhl ( as)

where A and B are uniformly distributed in the range 0 to 211‘. If the signals are coherent A = B.

By assuming that any noise generated in the electrical portions of the sonar-buoy array system is

negligible due to careful design and manufacture it is acceptable to limit our attention to acoustic

noise. The noise field used is that of spatially coloured noise. Like white noise this is a zero—mean

vector, but rather than having spatial cross-correlation coefficients that are zero, those of the

coloured noise covariance matrix are chosen to represent a noise field thathas a strong directional

component. The i,kth entry in the covariance matrix represents the crosscorrelation coefficient
between the ith and the kth sensor and is given by RN04” = [(i',k)exp(j(i— k)2nd/A sinfl).

l(i,k) is a decay function of i' and k and models the reduction in correlation as the two sensors
become further apart. Because the array sensors are equispaced and arranged in a straight line

the lag between two sensors is a function only oftheir separation, not of their absolute position
in the array. This gives the covariance matrix a Toeplitz structure. For the simulations here

the noise covariance matrix was chosen to be the same as detailed in [1] and [4] to aid compar-

isons. RN64.) = 0.9””1 exp (—gfi — k)1r) The p x 1 noise vector 5 is given a p—variate normal

distribution: g~ N,(§!,RN)

The signals are assumed to be either stationary, zero-mean and Gaussian, in which case the model

is said to be stochastic, or the signals are assumed to be of constant complex amplitude, in which
case the model is referred to as deterministic. The stodiastic data covariance matrix is formed from
the addition of the signal covariance matrix, R5, and that ofthe noise, RN to give R = Rs+02RN.

The data vector y is then given a p—variate Gaussian distribution with zero-mean and covariance
matrix R. The deterministic data vector is produced slightly differently. The individual data

vector y“) is formed by adding a deterministic signal term to a random noise vector.

with 5 ~ N,(Q,RN). For both models, successive data vectors are produced and multiplied by
their own transposes before being summed to give theoverall sampled data covariance matrix.

The Quotient method

For an array with p sensors the space that the data vectors inhabit is complex p-space, that is, a

p—dimensional vector space over a complex field. The p basis veclors for this space are the unit

orthonormal vectors that correspond to each of the p sensors.

For one source thesignal subspace is a straight line through the origin with each individual signal
vector being a complex scalar multiple of the steering vector; s = Are" where A is uniformly
distributed in the range 0 to 27r. and r is equal to one for deterministic data. and is normally
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distributed with zero mean for stochastic data. Likewise, two sources give rise to a signal subspace

generated by the matrix of steering vectors H = h , The received signal vectors do not occupy

all of the subspace (a finite number of points cannot fill an infinite space), and it is now shown

how their spread can be estimated.

The volume of an n-dimensional parallelepiped generated by in given vectors is given by |det M [,

where M is the n x n matrix whose columns (or rows‘) are the given vectors. It is, in fact, a

matter of controversy as regards to what order determinants and volumes are approached. The

traditional method is to define the determinant via explicit formulae on summed permutations and

then proceed to derive the algebraic attributes, it not being difficult to show that a consequence

is that it measures volumes very naturally. A more modern approach is to define the function

axiomatically (having the desired properties) and then show that such a function has the required

properties (existence and uniqueness, for example). interpretation of the function in the latter

approach is invariably volume-orientated.

For a random p x 1 vector 1 distributed normally, 3 ~ N,(Q,R) the probabiiity density function

can be written as 1

rv|R| exP (ulna—l!)

and thus it can be seen that for a certain probability 1’11“! = I: for some constant k. This defines

an ellipsoid which can be expressed relative to its principle axes by making use of the unitary

transformation, C, defined by C"R"C = A where A is a diagonal matrix. If the transformed

vector of coordinates is denoted by E (that is, 1 = C2) then

 

Hg) =

2'3"! = k
E'Ay = 1:

,Al 0
A =

0 1':

The set of eigenvalues of A is equal to the set of the eigenvalues of R" m'nce C is a unitary

transformation. It also follows that since 7"- “'1‘: are the eigenvalues of R", so A] ‘ - J, are the

eigenvalues of R. Thus the eigenvalues of a covariance matrix are proportional to the squared half-

lengths of the principle axes of the ellipsoid that is generated by the probability density function.

The volume of this ellipsoid is equal to some function of 7r multiplied by the product of the half-

,lengths of the principle axes“, and so is proportional to the product of the square roots of the

eigenvalues, which is in turn equal to the determinant of R.

volume? or HA1...A, = [RI

and the volume of the ellipsoid is interpreted as an indication of the spread of the data. It should

be noted that the characteristic ellipsoid (defined by k = l) is just one of an infinite nest of

 

'For my square matrix, det A = det A7
2For example, the area of a two dimensional ellipse with principle half-lengths a and b is equal to rub. .
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concentric ellipsoids, each one corresponding to a different specific value of the probability density
function. It is meaningless to claim that any one ellipsoid ‘contains' the data, in the same way as
a random variable that is distributed with a variance of 417 is not contained by the parameter a.
The characteristic ellipsoid is, however, indicative of the spread of the random vector in the host
space, just as 0 gives the standard deviation of the aforementioned variable.

In the cases where an ellipsoid is in a subspace, the volume with respect to the full space will be

zero.3 There are two equivalent methods of evaluating the non-zero volume with respect to the
subspace. Consider the k-dimensional ellipsoid with principle axis given by the 1: different (p x 1)
vectors, a...“ (with k < p) and denote the resulting p x I: matrix by V = b,...,u_k]. The
I: x 1: matrix 175v has a non-zero determinant which is proportional to the (squared) volume of
the ellipsoid in k-space.

Equivalently, and in an identical manner to the procedure used in the estimation techniques re-
ported in [1] and [4], it is possible to consider only the non-zero eigenvalues of the appropriate
projection matrix.

The Quotient method for estimating the directions of arrival relies on splitting the received data
into that part which lies in the signal subspaoe and that part which does not, then maximising the
former and minimising the latter with respect to the subspaces generated by the signals’ steering
vectors.

The volume of data in the signal subspace, V5, is taken to be proportional‘ to the product of
the non-zero eigenvalues of the projection of the sampled data covariance matrix, and the volume
of data in the noise subspace, VN, the product of the non-zero eigenvalues of the orthogonal

projection

v5 or fiA;(PRP')
i=1

VN (x (H)A;(PLRP“)
i=l

for p sensors and I: signals. The projection matrica are given by

P = H(H*H)-‘H’
P‘ = I—HUI’Hr‘H’

FRI”t and P‘LRPJ" will be denoted Ilis| and 1RN|, remembering that I | denotes non-zero deter-
minant. Since maximising a variable is equivalent to minimising the reciprocal, the final Quotient

expression is .

- . IRsl)Q = ergo min .— (1)
' (IRNI

3For purposes olfisualisation. a two dimensional ellipse nested in threest suffices. The ‘J-Volume’ is zero but
the '2-volume' (area) is not.

‘The proportionality is not. line" anymore since we have ignored the square term.
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Reducing the computation

Let A, . . . A, be the eigenvalu of P”? with only A; . . Ark non-zero.

p—h
Ipim = H A.-

i=1
= um [(Al +a)~-(4\Ek_k+a)a---a]

u—.o a

. 1' ’
= 31310 [3 E05 + 0)]

_ - i L ‘_ £13] at: detU’ R+aI)]

The determinant in equation 2 can be expanded and rewritten.

det (P‘R + a!)

det ((1 — P)R + a!)

det (it + a! — PR)

det ((R + a!) (1 - Pita: + a1)-'))

dew? + nl)det I — PRU-1+ a1)-')

det(R+ .71) det 1 — H(H’H)"H'R(}il + 01)")

data: + aI)det I — (mm-Winn aI)"H)

detu‘z + a1) det (H'Hr' (HUI — miiu‘i + tin-111))

data: + a!) det ((313)-‘11' (1 — izu‘t + (11)") H)

A
A
A
A

det(R + al)det((HlH)'1H’ ((1% + and: + a1)“ — izu'z + u1)-')11)

dew-‘2 + a!) (let (mun-13' (uni: + 01)“) H)

Putting this hack into equation 2 and taking the limit as :7 —~ 0 gives

p—h

[I A.- .-. amide: ((H'H)“H'R"H)
i=1

 

It is possible to use eigenvalue decomposition to evaluate [RSI and [RN] directly. However it was

found to be far quicker to recast these terms in the following way. '

(2)

(3)

The second term, it", is simplified thus: Let A. . "A, be the eigenvalues of Pi: with only A. .. .A.

non-zero. In a simth manner to before, this product is expressed as a determinant and then
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simplified .

= lim
u—D gp-kfin

a~u

. l -
hm [gr—II det(PR + 01)]

 

933 [0,14 det ((uIXPR/a + 0)]

= Iim det(aI) det(Pit/a + 1)]
a—D

We now substitute the full expression for P and then change the order of the terms in the second

determinants.

 

k ' 1 d d 1111' -' if:. ark et(aI) et ( H) H;+I:1 2’ ||

‘
2
:

is

r 1 _ )‘2
3.3, [UM det(al)det ((111K) ‘Hl;H + 1)]

 

det ((H'Hr‘mim) (4)

Equations 3 and 4, therefore, give a new pair of expressions:

|P*Ii| = detildet((H’II)"HUi"H)

[PR] = det ((E’Hr‘miin)

These involve the evaluation of the determinant of an order-two matrix, and thus a full eigen-

decomposition is unnecessary. By counting the number of floating point operations used to cal~

culate |P*1i‘.| and lPiiI the original way and the new way_ it can be shown that the latter gives

computation times approximately 6.5 times faster for |P*R{ and 27 times faster for |PR|.

Similar estimation algorithms

Three other methods were used for comparisons during computer simulations. The sampled data

covariance matrix (R) is subject to one or both of the projection matrices and then a function

evaluated which is then minimised with respect to different projection matrices. that is, with

‘It is a standard result that for A and B both In x n matrices with m ¢ n

clqu + AB’) = del(I + 57.4)

828 - Ptoc.l.0.A. Vol 15 Part 3 (1993)

   



Proceedings of the Institute of Acoustlcs

HIGH RESOLUTION BEARING ESTIMATION

respect to the steering vectors. The minimising criteria for the three methods are as follows:

method 1: = argg min 'n [RN]

method 2: = arggrnin [RN]

method 3: = argg min log (IRSI IRM)

When the function is the trace there are no complications; when the function is the determinant

it must be remembered that the projected matrices are rank-deficient and hence have zero deter-

minant. In this case the determinant is understood to he the product of the non-zero eigenvalues.

The justification for the first method is that it is the maximum likelihood solution when the

noise field is spatially white For coloured noise the maximum likelihood solution is given by

minimising IR”), which is unknown”, therefore the approximation [Pl-m is used instead. This

sub-optimal solution is derived from a Bayesian approach in The third method is derived

according to the Minimum Description Length (MDL) principle [4} The MDL principle is a

modern, information theoretic, formulation of Occam’s razor which shuns unnecessary complexity.

Simulation results

The simulations assumed a linear array of six omnidirectional sensors, equispaced at half a wave-

length. The two signals were coherent and of equal power, originating from 6" and 0" (0" being

broadside to the array). The signal model was deterministic with the noise covariance matrix as

detailed in the text. The signal to noise ratio varried from 11 to 20 decibels and there were 50

snapshots used to compute the data covariance matrix. For each noise level 100 Monte-Carlo runs

were performed from which the mean square errors of the different estimation algorithms were

estimated. The results for the two signals are presented in figures 1. The graph also shows the

Cramer-Rao lower bounds (CRLB) which were evaluated along the lines indicated in (It should

he noted that the Trace method broke down below l4dB.)

CRLB solid (lower)
Quotient dotted/dashed
method 1 dotted

method 2 dashed
method 3 solid (upper)
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Figure 1: Estimated mean square errors for both signals.
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