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Abstract: The field of a parametric radiator can be approximated as a complex

volume integral over a spherically diverging source function. Rapid numerical

convergence is obtained by modifying the contour of integration. The method

also permits inclusion of an amplitude taper function which accounts for

saturation effects. Results of a computer study which illustrate various

nearfield-farfield transition phenomena are presented.

Because parametric radiators can behave like end-fire arrays of consider-

able length, field models using infinite range approximation are often insuf-

ficiently accurate.1 We have devised a numerical model2 that appears to give

good account of effects observed at ranges greater than the primary Rayleigh

distance but still effectively finite. In this region, we find simply that

apparent source levels tend to be higher and beamwidths narrower than the

infinite range model predicts. These discrepancies can be thought of mainly

as a range error wherein the range to the projector is used rather than the

range to the effective "center of gravity" of the array.

In our finite range model we approximate the source function as a spheri-

cally diVergent wave of arbitrary beam pattern. The difference frequency

pressure can-then be written in dimensionless terms as the volume integral

Ni) '= I (W otFHEI" exp (-ik IE + Fl) (1)
v

where R is measured from origin to field point, F_from origin to source point

and E from source point to field point with k the.secondary wavenumber.‘ The

source function, for simplicity, is approximated as

Q (7‘) ~ 00 D¢(e.¢) exp (-Zar') EH") (2)
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where r = IF}, D is the directional pattern of the primary wave withazimuthal
angle o and polar angle a and E2 describes the extra loss due to finite amplitude
effects.

The range part of Equation 1 can be written as an integral in the complex
variable 2

F =1” dz E’(z) exp (-2) '(z‘ + 3‘)": (3)
Zo

where z = u + iv = or + ik ((r2 + a2)5 + r), (20 = uQ + ivo for r = 0),
B2 I ikoaz and a is the perpendicular distance from field point to line of
integration. Rapid numerical convergence of Equation 3 can be accomplished by
changing the path of integration to z = u + ivo where u ranges from uo to
infinity. Since the two contours can be connected at infinity without encircling
poles or cutting branch lines, the results are the same. Finally we write
Equation 1 as the two dimensional angular convolution»

P(R.6,¢) = Dome) D‘(°’.¢’) fl F(COS' V) (4)

where cos v = cos 6’ cos a + sin e‘ cos(¢’ - ¢) and D°(e,¢) is the aperture
correction.3 '

Our procedure is to calculate and store a table of complex values of F for
given values of the parameters k, u and R. Since F has a logarithmic singularity
at u = 0 we set the initial value of u small compared to the primary beamwidth.
Convolution with the primary beam pattern is accomplished by two—dimensional
angular integration with tabular interpolation to provide required values of F.
The field point angle is then changed and the procedure repeated.

Besides the usual difficulties in getting complicated computer codes to
work automatically we found two major problems. First, the saturation taper has
a pole in the complex plane that can fall fairly close to the modified path of
integration. (When this happens we have an abnormally large contribution to F in
the neighborhood. This problem was solved by devising an adaptive Simpson's
rule method in which the number of points is increased automatically in the
critical region. The second problem involves the convolution program in which
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premature dropout may occur. 0n the other hand, it may bog down in noise if

convergence criteria are too severe. This problem was overcome by various

refinements of the integration procedure and convergence criteria. Since the
adaptive Simpson's method proved too slow for the convolution, a piecewise

48 point Gaussian quadrature method was finally adopted. This gives good

results for secondary beamwidths as small as 1°.

The major effects of finite range are illustrated in figure 1 which shows
the difference frequency beam patterns calculated for a hypothetical conical
source of half-width 80 and ZaR = 1. The apparent source level is-the
dB/lwestervelt's source level and the beam angle re Hestervelt half-angle 0".
Small values of the parameter eO/ew then correspond to nearfield type sources

in which the primary wave acts as if it were collimated. In this regime source
levels are higher and beamwidths narrower than.for the_Hestervelt case which
is shown by the dashed line.

For large Values of the parameter 00/9w the source acts spherically

divergent. Apparent source levels are lower and beamwidths wider than for the

Westervelt case. In the limit the beam tends-toward the "square" of the conical
primary beam pattern. Figure 2 shows a comparison of the calculated and experi-
mental beam patterns for 90 cm diameter pistons of mean primary frequency 65 kHz”

and 3.5 kHz difference frequency. The range was BO-m or 2.9 Rayleigh distances.

The dotted.curve is calculated for 100 Rayleigh distances which is effectively

infinite. The apparent source level is seen to be 2 dB higher and the beam

pattern correspondingly'narrower than for the "infinite" range conditions.

Agreement between experimental points and the calculated curve is seen to be
reasonably good.

In figure 3, we show the effect of primary wave saturation. The projector
in this case is a 25 cm diameter piston with 250 kHz mean primary frequency and
5 kHz difference frequency. The curves are calculated for the appropriate

primary levels. (Only one matching adjustment of absolute level was required)
Agreement between theory and experimental points is also good. The effects of

nonlinear attenuation appear in a leveling off of secondary source level and
widening of the beam as the primary level is increased.
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We conclude from these results that, within experimental error, the model
accounts for finite range and finite amplitude phenomena.
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NEARFIELD BEAM PATTERNS
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Figure 1. 'Secondary beam patterns for a conical source of half-

angle 60 and 2uR = 1. Source levels are dB/INestervelt source

level and beam angle re Nestervelt's half-angle 6w;
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Figure 2. Experimental and theoretical
beam patterns for 90 cm diameter piston
with mean primary frequency 65 kHz
difference frequency 3.5 kHz and R/Ro =
2.9.
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Figure 3. Experimental and theoretical beam patterns for 25 cm
diameter_piston with mean primary frequency 250 kHz difference
frequency 5 kHz and R/Ro = 10 showing effects of primary wave
saturation on source level and beamwidth.
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