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Figure 3 shows the low frequency        
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second is the anomalous term (fr = l
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to 0'

continuous wave and explosive measure-

ments is taken as evidence against the

finite amplitude explanation .

We have beentrying to identify the precise behavior and

possiny the cause of the anomaly by carrying out a series of

propagation eneriments in waters of different temperature and

salinity. Figure h illustrates our experimental technique.

Bodies of water are chosen primarily for their suitability as

refraction sound channels so that losses will occur within the

water and not at the boundaries. A sound channel is famed by the

combined effects of the higher temperature at the surface and the

pressure effect at the bottom. The resulting increase in sound

speed toward both boundaries
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fracted toward the sound speed Alll

 

minimum which is the sound
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channel axis.

Fig. It

Explosive charges are detonated on the sound channel axis at

various ranges from the listening ship. The acoustic signals are

received by means of a hydrophone also located on the axis, and the

electrical signal is recorded on magnetic tape for later analysis.

 



 

IL wuuld seem from the results for the cantilevered triangular

1!].rlte that it is desirable in such cases to use a minimum number

oi triangles for greatest accuracy.
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  The recorded signals are analyzed using l/3-oc'beve filters to

determine the peak pressure response at the selected frequencies.

The received pressure level is then subtractexi frm the knalm

emu-2e level to obtain the aggropriete value of mopagetion loss

as a flirtation of frequency. Figure 5 how a. typical data plot of

J.an vs. range for the frequency 2|.th Hz. From the value of

propagation loss 10 log K was subtracted for cylindrical spread-
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straight line fit gives the

attenuation dimetly in

decibels per unit distance.
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indicates the addition-l lass

due tn spherical spreading “Manner

near the source. Fig. 5

Figure 6 shows our anal-inlental values of 1 vs. hequeney

for the 1969 Red Sea Experiment. The 5:21.16 line 15 the Tharp

'curve of Fig. 2. The fit is seen to be reasonably good except

fez- the slightly higher Red Sea value from 1-10 Mix. A mere

precise relaxation curve fit tn the date in fact gives an apparent

reluution frequency of
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1.5 kHz compared ta 1 kHz  
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requires an increase in

"Emm‘m-v relaxation frequency with

Fig. 6 temperature.   Figure 7



shows our two relaxation fre-
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MEDIVEHMNEAN SEA _

1A a uniform trend of the three
mm

values is apparent, even though
my?”
a _

the overall. conszlstency of

4
m
m
“
n
m
x
m
n
u

Fl
Fu

oE
NC

V
um

]

4A_A_ .' a , ,5 L ,5 ,0 relaution-hke behavior of the
TIMPHAIUH \‘(l

experinerrtal data is still

impressive.

The Hudson's Bay results, Fig. 8 , tend to weaken the re-

Fig 7.

laxation hypothesis. (This was a Joint U.S./Cansdian experiment

carried. out with Defense _Research Estahnslmnt Atlantic,

Halifax, August 1970.) It is apparent that the values at a:

are not only considerably in excess of Tharp (solid Line) but also

do not fit a relaxation curve WELL at all.
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several possible reasons for the

apparent dilemma: (l) The data

may be subject to systematic error

(which can be eliminated with

improved analytical methods ) ,
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W'fififl'fu’ffm (2) The simplified sound channel

. a u m w m to In“ model may be inadequate (we areammo x-mx

Fig. 3 presently experimenting with a

Fast Fourier Field. Program), (3) Mare thzul one mechanism may be

involved (volume smattering and bottom leakage for example). 


