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INTRODUCTION

The fluctuations in a physical system, which cannot be described by the classi—

cal macroscopic phenomenology of mathematical physics, are of considerable

interest, both as a source of information about the structure and dynamics of

the system and as experimentally unavoidable noise which corrupts macroscopic

measurements of the properties of the system. The Gaussian random process and

its simple generalizations have long been recognised to be useful models for

these fluctuations and the mathematical description of such processes has been

stimulated and influenced strongly by insights derived from the‘physics of

fluctuating systems and in particular from the phenomenon of Brownian motionllL

However it has become increasingly apparent that the fluctuations in many

systems are modelled more effectively by non-Gaussian noise processes. These

non-Gaussian processes can be analysed both formally and by computer simulation,

principally by methods again inspired by the study of Brownian motion. After

introducing the main tools for this analysis, the Fokker Planck (F.P) equation

and stochastic differential equations (s.d.e) [2] and illustrating their use by

considering several simple, but non—trivial, non—Gaussian noise processes we

will demonstrate how it is possible to describe and simulate the K distributed

process, which has been recognised to be of considerable importance and wide—

spread utility [3]. An extension of this model to include the effect of mixing

noise of this type with a coherent signal will also be outlined.

FOKKER PLANCK AND STOCHASTIC DIFFERENTIAL EQUATIONS

The F,P equation is a linear partial differential equation obeyed by the

probability density function (p.d.f) P(x,t) of a random process x, from which

the probability that x takes values between x and x+dx attime t is given by

P(x,t)dx. For a one dimensional process the F.P. equation may be written as

a a 32 23; P(x.t) = — 3; (a(x) who) + QC) on P(X.t)) (1)

The stationary statistical properties of x are described by the time-independent

solution P(x,m) of (1) satisfying

3
3t

P(x,m) 0 (2)

which may be shown to take theform

X

dx'.§l§il_

b2(X')

 

P(x.°°) exp (3)

b2(x)

where C is determinedby the requirement that P(x,m) is normalised. As pro-

cesses described by F.P equations are necessarily Markovian the temporally

varying statistical properties of X are determined by ptx,tlxo). the
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conditional probability that X take the value x a time t after having the valu
x0. This may be obtained as the solution of (l) satisfying the initial '

‘condition

P(x,0|x°) = 6(x — x0) (4)

An alternative way in which a stochastic element may be introduced into the
description of a process X is to propose an equation of motion for x which
includes an explicit randomly varying term. Such a stochastic differential
equation may be written as

dX _dt — a(x) + b(x) f(t) (5)

where f(t) is the Gaussian white noiseprocess. As long as this s.d.e is

supplemented by the Ito interpretative calculus [2] (l) and (5) provide sto—
chastically equivalent descriptions of the same process. The linearity of the
F.P equation and its classical mathematical form make it a suitable vehicle
for formal analyses; the equivalent s.d.e provides a convenient route to the
simulation of the process by numerical integration using one of several
algorithms described in the literature [4]. Finally we note that systems
described by F.P.E and s.d.e in which b(x) is a constant are said to exhibit
additive noise; when b(x) depends explicitly on x the noise is said to be
multiplicative.

SOME EXAMPLES

we illustrate the foregoing discussion by a few examples presented in essen—
tially tabular form; the qualitative properties of the noise processes will be
evident from realisations generated by numerical simulation.

1) a(x) = —ux, b(x) = 1.

a § oxz
P(x,w) = (5;) exp —(—§—)

§2) a(x) = B — ax, b(x) = x

Gaussian, Ornstein Uhlenbeck process

Fig l.

Gamma process. x > O t

natural boundary at origin

  

B
a 8-1 ~ux

P = x 2.(x,m) F(B) e Fig

3) a(x) = B - ax, b(x) = x Power low tail in distribution,
I Bn+1 e-B/x note occasional large fluctuations

P(X,") = TQE:IT “+2 a= — i - Levy stable distribution
x Natural boundary at origin.

Fig 3.

GAMMA AND RAYLEIGH PROCESSES AND MULTIPLICATIVE NOISE

So far nothing has been said about the origin of the F.P and s.d.e we have
discussed. while the original s.d.e of Brownian motion were obtained by
supplementing deterministic equations of motion by a random term this procedure,
when invoked without the penetrating physical insight of Langevin, provides an
uncontrolled and unreliable description of a physical system, particularly
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when multiplicative noise is involved. If, however» a F.P.E. can be deduced

from either sound physical principles or the systematic reduction of a more

detailed description of the system this will provide us with an immediate

justification for its stochastically equivalent s.d.e. Here we consider

two simple cases which are directly related'to the description of the K—process.

Jakeman [5] has shown that the coherent illumination of a collection of

scatterers with a negative binomial distribution will, in the limit of a large

mean number of scatterers, yield a K distributed intensity of scattered light.

The negative binomial distribution can be established by the competing

processes of birth, death and migration described by the rate equation

d PN(t)
T— = H(N+1)§I+l(t) - ((A+H)N+\)> PN(t) + (A(N-1)+U)PN_1(t) (6)

PN(t) is the probability that N scatterers are illuminated at time t; X, u, v

characterise the uncorrelated processes of birth, death and migration respec-

tively. By introducing the essentially continuous variable x through

N=fix

where §_e v/(u-A) is the mean number of scatterers, scaling the time variable

(t + t/N) and'erpanding PNtl(t) in Taylor series the following equation for

P(x,t) E Pfik(tN) can be derived '

 

a}? _ a2 3
3E — A 2 (xP) + v ax ((x-1)P) , (7)

3x

which is the F.P.E describing a gamma process with the stationary distribution

a
a —ux a-l v

P(xlm) — P(x) 9 x , a - x .

Thus this simple expansion procedure yields a F.P equation exhibiting multi—

plicative noise; viewed from the point of view of the s.d.e such a description

could hardly be thought to be obvious. The second process implicit in

Jakeman's model is that of coherent scattering in which the intensity of

scattered light I is determined by the statistical properties of the phases of

the electric fields scattered by a collection of illuminated objects. If the

phases are assumed to be independent then an exponential distribution of

scattered intensity results in the limit of a large number of scatterers. This

is a special case of the gamma distribution and can be describedby the F.P.E.

2

a—P = i ((z—l)P) + 3— (zP) (8)
3t 32 az2

where z = I/<I>. This equation has the required stationary solution and also

describes the temporal properties implicit in those of the phases in the con-

ventional scattering model. Writing the electric field as

mm ’
s(t) =Za.(t) e 3' , (9)

v J
J

forming the intensity through

*
I = z e (10)

3B Proc.l.O.A. Vol 8 Part 5 (1986)



 

Proceedings of The Institute 'of Acoustics

 

THE DESCRIPTION AND SIMULATION OF CORRELATED NON—GAUSSIAN NOISE

andnggnstructing the normalised correlation function Cn m(t) = <In(t)1m(0)>/

<I> gives, in the limit of a large number ofscatterers

min(n.m) - ,

(film!) 2r
' = l I __—chlmm mm. 2 (mrnruman! |g1(t)| . (11)

r=0

The form of this result incorporates the assumed statistical properties of

the phases (exp i(¢ (t) — ¢l(t'))> = gl(t—t')6k E and combinational factors

arising from the products of sumsof exponentials representing powers of the

intensity. Cn'm(t) may also be formed from the fundamental solution of (8)

through

n m
cn'mm -/:[dzdz° P(z,t|zo)z zo P(zo,°°). (12)

Expansion of F(z,tlzo) in Laguerre polynomials

—z —rt
P(z,tlzo) — e E Lr(z)Lr(zo) e _ (13)

and use of the integral

w n - r (n')2

fdz z e 2L (z) = (—1) —' n2: (14)
r

(n—r)!r!
o

= O n ( r

demonstrate how (12) and ultimately the structure of the F.P operator (3)

encode the combinational factors implicit in the assumed statistical properties

of the phases ¢t(t). Thus the F.P formulation, couched in terms of the inten—

sity alone,.provides us with a compact and powerful description of the scatter—

ing process.

FOKKER-PLANCK DESCRIPTION OF THE K PROCESS

To construct a K process we consider a Rayleigh process 2 with a current mean

value x, which is itself gamma distributed. The stationary joint distribution

of x, z is then

_ l v—l —x —z/r .
P(z,x) - $731IT x e e , (15)

the marginal distribution of z is a K distribution

v/2
_ l v—l —x —z/x _ 22

P(z) — —F(v+1) fdxx e e — ——Nv+l) xva/E) (16)

O

A F.P.E describing the dynamics of x, z and having (15) as its stationary solu—

tion is
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2
i . _ I9— 1 _ -3at P(x,z,t) -74( 2 (xP) + ax ((x v x)P))

(l7)

82 3 2
+8) [3 (2p) + 8—20; — up)

The equivalent s.d.e s are

% ="(V —- x + §)+’4§x§fl(t)

(18)

=$(1 -§)+a*z* sm-
Both (17) and (18) are made up of components reminiscent of the gamma and

Rayleigh processes, suitably coupled to yield (15) as a stationary solution.

Some formal analysis of (17) is possible; in particular projection operator

techniques can effect the separation of the intensity autocorrelation function

into a slowly varying number fluctuation term and a rapidly decaying speckle

term, reproducing Jakeman's generalised Seigert relation. The existence of

~the stationary solution (15) ensures the existence of a complete, ortho-

normal set of eigenfunctions of the F.P operator [2]. These however have not

been found in closed analytic form. Numerical integration of the s.d.e

provides a route to the simulation of K noise; simulated and experimentally

measured K—noise are shown in Fig 4.

When K noise is mixed with a coherent signal of intensity a the resulting

intensity has a distribution given by
on

_ 1 v—l —x (2+a) 2/z_a
P(z) — —-1.(v+l) [X e exp (- x )I°( x )dx (19)

O  

 

This may beregarded as a superposition of Rice processes with a gamma dis—

tributed noise power,- In is a modified Bessel function.» The F.P description

of the process analogous to that of the K process is given by

      

2 /_ I (Z/Z—a)

%=74LZ(XP)—%(v—x+a—;E—2xza
3x 1(2/5) _

o x . >'
(20)

2 /_ 1(2/5)
_ _ 1 _£ 2 az _1 x+3 2 (zP) 32 ((1 +
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while the equivalent pair of s.d.e is

2/2: {la/Em)

dt x x row/Em 1

 

(21)

2 =08 1-2.2/5fl +£izif (t,
.dt " “ low/Em 2

(20), (21) reduce to (l?),(18) when a = O. Relatively little formal analysis

of these complex equations is possible although we again have the stationary

solution, a complete orthonomial set of (unknown) eigenfunctions and a separa—

tion into fast and slow components wheq}f >274. A simulated sample of this

homodyned K noise is shown in Fig 5. ‘

 

CONCLUDING REMARKS

It has been shown that the Fokker Planck and stochastic differential equation

formalisms provide a useful context within which to analyse and simulate non—

Gaussian noise processes. In particular it has been possible to accommodate

the K process within this framework.
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