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DYNAMIC PROGRAMMING VARIATIONS IN AUTOMATIC SPEECH RECOGNITION
R K MQORE

ROYAL SIGNALS AND RADAR ESTABLISHMERT, MALVERN

INTRODUCT IOGN

Non-linear time warp pattern matching by dynamic programming has established
itself as one of the most useful tools available for comstrucring an automatic
speech recopniser. Using such technicues, present day recognisers achieve
significantly better performance than their predecessors. This paper
describes three basic dvnamic programming algorithm variacions. In che firse,
the cost of time compression/expansion is simply set to a constant value. 1In
the second, this cost is made a function of the relationship between the irtens
being matched. In the chird, the cost is related to the rate at which the
specch spectrum shape changes in time. 1In addition, two efficiency
medifications are described which speed up the matching process,

DYNAMIC PROGRAMMING ALGORITHMS

The three dynamic programming algerithz variations represent three wavs of
expressing the non-linear time scale distortion necessary ta match one speech
sample with another. Tho simplest algorithr {1) states that the caost of
disterting the time scale is constant per unit time, Mathematically che
algerithm is expressed as:

gli-1, j) + K
gli, j} = mirn gli=1, j-1) + d(i, i) cre (1)
gli, j-1) <+ K

where d{i, j) is rhe distance between the i 'th Erame of one speech sample and
the j'th {rame of the other (where a frame might be a spectrum), and gfi, j)
is the cumulative distance between the first i frames of the first sample and
the first j frames of the second sample. If i is in the range 1 to 1 and ] is
ir the range 1 ro J, then g(l, J) is the distance between the twe speech
samples. K i5 the cost of disterting the time scale by one frame time unic.
Yhen K = @, complete time distortion is allewed, and anything will macch with
an¥thing. As K gets larger, so the amount of time scale distortion allowed
Bets progressively lower. This algorithes is equivalent to the one presented
by Velichko and Zagoruyko [ 2] .

The second algorithm (2} states that the cost of distorting the time scale at
a particular instant of time within a speech sarple is a function of the
relationship between the two speech samples at that instant.

gli-1, iy » ddi, j)

gli, 3} = min | gGi-1, j-1) + k* d(i, j) ceel (2)
gli, j-1) + d(i, j}
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This algorithm is equivalent to the one used by White and Neeiy [ 3] when
Ke=1. When K = 2 it is equivalent to the best algorithm described by
Sakoe and Chiba [1].

The third algorithm (3) states ‘that the cost of time scale distortion is a
function of rate of change of spectrum of the speech sample. That is, if the
spectrum is changing slowly (for example, within a vowel, nasal, fricative or
silence region) then time distortion may take place with little cost. If,
however, the spectrum is changing rapidly (for example, during stop or cv/ve
transitions) then the time scale wust be preserved.

gl{i-1l, j) + K* g(i, i-1)
gli, i) = min gli-1, 3-1) + af{i, j) veas (3)
gli, j-1) + K* s(j, j-1)

s{i, i-1) is the distance berween the i'th frame of ome speech sample and the
previous frame of the same speech sample.

For each of the three algorithms, the overall similarity score calculared may
be normalised by the lengths of the speech samples being matched. This is
done by dividing g(I, J) by I + J.

Each algorichm may alsc be subjected to an efficiency modification whereby a
restriction is placed on the values of i and j. 1In the first modification,
i and j are restricted to values which maintain gfi, j)} within a distance ¥
of the diagonal of the matrix G. With high values of ¥ i and j can take any
value. With low values the calculatiens will be confined to the diagonal
region. Hence by varying W the algorithms can be changed from linear time
warping to less and less restricted non-tinear time warping. Also, since
fewer distances have to be calculated for smaller values of W so the Faster
the algorithm becomes.

The second efficiency modification is equivalent to the method known as
‘beam search’. In this case the restriction is made dependent upon the
quality of the partial matches in the matrix G. It is effected by
thresholding each row in the matrix such that only values of gli, 3) less
than the lowest walue in that row plus the variable T are retained. This
means that there is effectively a low value of ¥ in regions where rhere is a
good match between the speech samples, and a high value where there is
uncertainty. ,

EXPERIMENTS

To investigate the behaviour of these algerithms, two sets of data were used
in a series of recognition experiments. The {irst set consisted of

22 repetitions of the ten digits (zero-nine) spoken in isolatioen, and the
second set comprised 25 repetitions of the eight cardinal vowels. Both sets
were spoken by a phonetician and the parameterisation was effected by a

16 channel filter bank using a 10 ms frame rate. One example of gach digit
and one example of each vowel were taken from the centre of the recordings
and used as templates.

Each algorithm (normalised and unnormalised) was tested over a range of
values of K, W and T. Over 400 experiments were conducted, most of which
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each took two hours of computer time.
RESULTS
The results for variationms in K are as follows:

For algorithm 1, normalised digits peak at K = 50 and 60 with a recognition
rate. of 96.4%. At this value of K the unnormalised digits achieve 83,22
rising to 93.2% at K = 140. Normalised vowels also peak at K = 50 and 60 and
again at K = 110 and 120 with a recognition rate of 98.5Z. Unnormal ised
vowels are marginally better with a rate of 99.0% at K = 4C and 50. Thus,
the optimum value for K appears to be 30.

For algorithm 2, normzlisation makes little difference with values of K
greater than 15, 1In the region K =1 to K =15 normalised digits gradually
increase in performance from 91.8% at K = 1 (White and Neely), 92.3% at K = 2
{Sakoe and Chiba) to a peak of 94.1% at K = 7 and 9. Unnormalised digits are
fairly constant in this region with a minor peak of 91.8% at K = 1 and 10.
For vowels, both the normalised and the unnermalised versions suffer a drop
in performance in the K = 2 and 3 region. Normalised vowels attain 93.0% at
K = 1 and this drops to 84.0% at K = 2. Performance then recovers to teach

a peak of 92.0% at K = 10. Unnormalised vowels fare slightly worse at the
peaks of K = 1 and 10 with a rate of 91.8%, but the figure drops to only 86.5%
at K = 2. For valuesof K less than 1, all performance suffers a steady
decline. The optimum value for K is thus 1.

For algorithm 3, normalisation improves the performance for digita over most
values of K. Above K = B normalisation also improves vowel recognition, but
below K = & it depresses the performance. Normalised and unnormalised digits
peak at K = & with recognition rates of 96.4% and 93.6%. Normalised vowels
peak at K = 4 and 8, and unnormalised vowels peak at K = 2, 4 and 8 all with
a rate of 97.5%. The overall optimum is thus K = 8.

Comparing the three algorithms ac optimum values of K, algorithm 1 comes out
best (digits 96.4%, vowels 98.5Z), with algorithm 2 slightly worse (96.4%,
97.52), and algorithm 3 some way behind (94.1%, 93.07).

For the variations in W and T only the normalised versions of the algorithms
were Lested at optimum values of K. The results for W are as follows:

For algorithm 1, as ¥ is reduced below 25 the tecognition rate for the digits.
drops off with a slight peak at W = 3 (linear time normalisation). For

vowels the recognition rate is maintained as W is reduced to 3 where there is
a slight peak teo 3%.0%.

For algorithms 2 and 3 the behaviour is much the same as for 1. None degrade
until W is less than 30, hence each can be speeded up by a factor of 1.6
without lass of recognition accuracy. In general, digits fair worse than
vowels as W approaches linear time normalisation.

The tests for T were only applied to algorithmsl and 2. For algorithm 1, both
digit and vowel scores fall at approximately the pame rate as T is reduced
below 1700. A test revealed that this value of T enabled the whole matrix to
be included in the beam search. Hence this variation can provide ne increase
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in search efficiency.

For algorithm 2, the vowel performance degraded with lower values of T in
much the same way as with algorithm 1. However, the digit score increased to
92.7%7 at T = 1000 and then remained above the §1.8% obtained at large values
of T down to T = 600, Below this value the score falls. The same test

revealed that at T = 500 this algorithm was achieving a speed up factor of 4.
CONCLUSIONS

Three dynamic programming algerithms have been shown to be open to
optimisation in terms of recognition accuracy and speed of computation. For
accuracy the algorithm based on a constant time distortion cost is comparable
with the one based on a cost related to the rate of change of spectrum. Both
algorithms are shown to be guperior to the one based on either White and
Neely's or Sakoe and Chiba's. All algorithms can be speeded up by a factor
of 1.6 without loss of accuracy by using a simple restriction on the dynamic
programming matrix. However, White and Neely's variation can be speeded up
by a factor of 4 using beam search.
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