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INTRODUCTION

Non—linear time warp pattern matching by dynamic programming has established
itself as one of the most useful tools available for constructing an automatic
speech recnkniser. Using such technicues. present day recognisers achievesignificantly better performance than their predecessors. This paper
describes three basic dynamic programing algorithm variations. In the first,the cost of time compression/expansion is simply set to a constant value. In
the second, this cost is made a function of the relationship between the items
being matched. In the third, the cost is related to the rate at which the
speech spectrum shape changes in time. In addition, two efficiency
modifications are described which speed up the matching process.

D l'NA}! lC PROGRML“. ING ALGOR I’ll-NS

The three dynamic programming algorithm variations represent three ways of
expressing the non—linear time scale distortion necessary to match one speech
sample with another. The simplest algorithr (1) states that the cost of
distorting the time scale is constant per unit time. Mathematically the
algorithm is expressed as:

g(i-1, j) ¢ x
g(i, j) = min g(i-1,j-1)‘ d(i. j) (1)

s(i.j'1) + K

where d(i, j) is the distance between the i'th frame of one speech sample and
the j'rh frame of the other (where a frame might be a spectrum), and g(i. j)
is the cumulative distance between the first i frames of the first sample and
the first j frames of the second sample. If i is in the range ] to I and j is
in the range 1 to J, then g(1, J) is thc distance between the two speech
samples. K is the cost of distorting the time scale by one frame time unit.
hhen K = w, complete timc distortion is allowed. and anything will match with
anything As N gets larger, so the amount of time scale distortion allowed
gets progressively lower. This algorithm is equivalent to the one presented
by Velichko and Zagoruyko [ 2] .

The second algorithm (2) states that the cost of distorting the time scale ata particular instant of time within a speech sample is a function of the
relationship between the two speech samples at that instant.

80-1, 1) * d(i. j)
3(i, j) = min g(i-l. j-l) O K* d(i, j) .... (2)

gfinj‘n * dfi.j)
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This algorithm is equivalent to the one used byWhite and Neely [3] when

K = 1. when K = 2 it is equivalent to the best algorithm described by

Sakoe and Chiba l1] . >

The third algorithm (3) states that the cost of time scale distortion is a

{unetion of rate of change of spectrum of the speech sample. That is, if the

spectrum is changing slowly (for example, within a vowel, nasal, fricative or

silence region) then time distortion may take place with little cost. If,

however, the spectrum is changing rapidly (for example, during stop or CV/VC

transitions) then the time scale must be preserved.

g(i-1. j) * K‘ 5(i, 1-1)
g(i, j) = min gli-l, j-l) + d(i. j) (3)

an, j-l) + K* s<j. j-l)

s(i, i—l) is the distance between the i'th frame of one speech sample and the

previous frame of the same speech sample.

For each of the three algorithms. the overall similarity score calculated may

be normalised by the lengths of the speech samples being matched. This is

done by dividing g(l, J) by I s J.

Each algorithm may also be subjected to an efficiency modification whereby a

restriction is placed on the values of i and j. In the first modification,

i and j are restricted to values which maintain g(i, 5) within a distance w

of the diagonal of the matrix C. with high values of w i and j can take any

value. with low values the calculations will be confined to the diagonal

region. Hence by varying W the algorithms can be changed from linear time

warping to less and less restricted non-linear time warping. Also, since

fewer distances have to be calculated for smaller values of W so the faster

the algorithm becomes.

The second efficiency modification is equivalent to the method known as

'beam search'. In this case the restriction is made dependent upon the

quality of the partial matches in the matrix C. it is effected by

thresholding each row in the matrix such that only values of g(i, j) less

than the lowest value in that row plus the variable T are retained. This

means that there is effectively a low value of is‘ in regions where there is a

good match between the speech samples, and a high value where there is

uncertainty.

EXPERIMENTS

To invescigate the behaviour of these algorithms, two sets of data were used

in a series of recognition experiments. The first set consisted of

22 repetitions of the ten digits (zero—nine) spoken in isolation, and the

second set comprised 25 repetitions of the eight cardinal vowels. Both sets

were spoken by a phonetician and the parameterisatinn was effected by a

16 channel filter bank using a 10 ms frame rate. One example of each digit

and one example of each vowel were taken from the centre of the recordings

and used as templates.

Each algorithm (normalised and unnormalised) was tested over a range of

values of K, w and T. Over 400 experiments were conducted, most of which
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each took two hours of computer time.

_RESULTS

The results for variations in K are as follows:

For algorithm 1, normalised digits peak at K = 50 and 60 with a recognition

rate: of 96.41. At this value of K the unnormalised digits achieve 83.21

rising to 93.21 at K = 140. Normalised vowels also peak at K = 50 and 60 and

again at K = 110 and 120 with a recognition rate of 98.52. Unnormalised

vowels are marginally better with a rate of 99.01 at K = 1.0 and 50. Thus,

the optimum value for K appears to be 50.

For algorithm 2, normalisation makes little difference with values of K

greater than 15. In the region K = l to K = 15 normalised digits gradually

increase in performance from 91.81 at K = 1 (White and Neely). 92.31 at K = 2

(Sakoe and Chiba) to a peak of 94.11 at K = 7 and 9. Unnormalised digits are

fairly constant in this region with a minor peak of 91.81 at K = l and 10.

For vowelsI both the normalised and the unnormalised versions suffer a drop

in performance in the K = 2 and 3 region. Normalised vowels attain 93.01 at

K = l and this drops to 84.02 at K = 2. Performance then recovers to reach

a peak of 92.01 at K = 10. Unnonnalised vowels fare slightly worse at the

peaks of K = l and 10 with a rate of 91.81. but the figure drops to only 86.51

at K = 2. For valuesof K less than 1. all performance suffers a steady

decline. The optimum value for K is thus 1.

For algorithm 3, normalisation improves the performance for digits over most

values of K. Above K = B normalisation also improves vowel recognition. but

below K = 8 it depresses the performance. Normalised and unnormalised digits

peak at K = 8 with recognition rates of 96.5.1 and 93.61. Normalised vowels

peak at K = L and 3, and unnormalised vowels peak at K = 2. A and 8 all with

a rate of 97.51. The overall optimum is thus K = 8.

Comparing the three algorithms at optimum values of K. algorithm 1 comes out

best (digits 96.41, vowels 98.51). with algorithm 2 slightly worse (96.41,

97.51), and algorithm 3 some way behind(91o.l1. 93.01).

For the variations in R and T only the normalised versions of the algorithms

were tested at optimum values of K. The results for U are as follows:

For algorithm 1. as k’ is reduced below 25 the recognition rate for the digits,

drops off with a slight peak at w = 3 (linear time normalisation). For

vowels the recognition rate is maintained as W is reduced to 3 where there is

a slight peak to 99.01.

For algorithms 2 and 3 the behaviour is much the same as for 1. None degrade

until H is less than 30, hence each can be speeded up by a factor of 1.6

without loss of recognition accuracy. In general, digits fair worse than

vowels as N approaches linear time normalisation.

The tests for T were only applied to algorithmsl and 2. For algorithm 1, both

digit and vowel scores fall at approximately the same rate as T is reduced

below 1700. A test revealed that this value of '1' enabled the whole matrix to

be included in the beam search. Hence this variation can provide no increase
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in search efficiency.

For algorithm 2. the vowel performance degraded with lower values of 1‘ in

much the same way as with algorithm 1. However, the digit score increased to

92.71 at T = 1000 and then remained above the 91.81 obtained at large values

of '1‘ down to ‘l' = 600. Below this value the score falls. The same test

revealed that at T = 800 this algorithm was achieving a speed up factor of lo.

CONCLUSIONS

Three dynamic programing algorithms have been shown to be open to

optimisation in terms of recognition accuracy and speed of computation. For

accuracy the algorithm based on a constant time distortion cost is comparable

with the one based on a cost related to the rate of change of spectrum. Both

algorithms are shown to be superior to the one based on either White and

Neely's or Sakoe and Chiba‘s. All algorithms can be speeded up by a factor

of 1.6 without loss of accuracy by using a simple restriction on the dynamic

programing matrix. However, white and Neely‘s variation can be speeded up

by a factor of 4 using beam search.
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