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ABSTRACT

The near-wall response of periodicelly-forced turbulenlt flows is considered and
we deal with the fluid dynamical and computat ional aspects of the problem in
this paper. The corresponding, modulated turbulent Stokes layer problemis solved
with extensions of the rapid distertion theory, precisely in the frequeney range
where quasi-steady assumplions would fail. The computed unsteady velocity osci-
llations and modulated turbulent stresses compare Favorably with observal jans in
the "non-quasi-steady" frequency tanges. This forms the basis for the acpoustical
acpects of the problem to be reporied subsequently.

INTRODUCTION

Pulsat ing turbulent flow in pipes and channels and over flat plates has reccived
special recent attention since it provides relatively simple configurat ions for
fundamental studies of unsteady turbulent shear flows and their possible control
through forcing. Karlsson [1] was the first to study pulsal ing turbulent boundary
layers over a flat plate. Recently Binder & Kueny [2], Cousteix, et al. [3],
Parikh, et al. [4] and Binder, et al. [5] studied experimentally pulsaling flows
in channels and Tu & Ramaprian and Shemer, et al. [7] addressed the pipe Flow
problem. A compilation of existing data on pulsating, wall-bounded turbulent
flows can be found in Carr [8].

One general resull from the experiments is thal no preferred frequencies were
found, in contrast to excited free turbulent flows. However, for wall- bounded
flows the modificaljons of the turbulence struclure by pulsat ions nevertheless

do depend on the frequency range. Al low frequencies, Carr [8] pointed out that
a quasi-steady behavior js observed @s would be expected. The time- or Reynolds-
averaged mean velocily profile is practically the same as ihat for sieady flow
with the same liocal external Flow., In this case, although there is significant
variations in the turbulence energy and shear siress, their ratio remains at the
quasi-asteedy value. As the imposed oscillation frequency is increased beyond a
"eritical™ value, there appear significant interactions belween the periodic
oscillations and the turbulence structure. Mizushina, et al. [9] relates this
critical frequency to the turbulent burst in the flow and sho that the intensity
of turbulence no longer follows 1hat abserved in-the unperturbed flow case. 1In
the same post-critical frequency range Ramaprian, et al. [10] also observed that
the turbulence structure near {he wall is perlurbed out of equilibrium. The
appropriately phased-averaged turbulence intensities and shear stress experience
rather large phase shifls which are frequency dependent

Several attempts have tecenily been made at computing periodic turbulent shear
flows at various levels of modelling effort [3],[6],{11])-[13]). The main defrct
being that closure relalions were idenlical to that used for steady Fflows
and thus have not been successful, except in the the quasi-steady region,. in. Lhe
comparison with observalions beyond the “"crilical™ frequency region as poinled
by Hanjali¢ & Stosi¢ [12]. Furthermore, in (hese models |he near-wall velocity
was taken. to be that given by the law of the wall for steady flows. Thus the
importanl issue of {he turbulent Stokes layer was completely circumvenied. Hore
recently, Kebede, et al. [14], using 1he Full Reynolds siress model but with
quasi-sieady closure, computed periodic turbulent flow properlies down into the
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viscous layer region. For application to pulsaling turbuleni flows, however, the
resulls were time-stiep dependent and deviated considerably from observat ions.
On the basis of their observations, Binder & Kueny [2] point out the relevant
length scale of the near-wall region being that of the viscous Stokes layer v/
\o {hat of the nrar-wall viscous layer in turbulent shear fluw WU, , where v
is the kinematic viscosity, w the forcing frequency and U, the frictional wvelo-
city. In facl, the “crilical™ frequency is in the vicinily when the ralio of
lhe two layers is of arder unity, Lhat is, when the parameter lngiuifum is of
the order of ten. In this persmeier region the dynamical effects of the period-
ic forcing strongly influences the wall-region viscous layer of the turbulent
shear Flow. In Fact Cousleix [15] concluded tnet the correct descriplion of the
near-wall region .would be essential towards oblaining the wall shear slresses
at the intermediate and high frequency regions. The socalled "critical® fre-
guency region . is now understood intérms of the paramolorlg being of order ten
or {hercabouts.

In the present paper we focus our sliention on an appropriate, but simplified,
modelling of pulsating - turbulent flows al the "high frequency” region interms
of the paremeter l; where quasi-steady models have been known to be inadequate.
The theoretical consideration nalurally follows the feasability indicated by
experiments [161,[17] in separating the time-dependent, phase-averaged field
from the time-independent Reynolds-averaged field. In fact, Carr's [8] survey
indicate that experjmentally the mran field is not affected by the pulsalions
and can infact be obtained from quasi-steady models which we shall regard as
being given here. Far the near-wall phased-aversged field, we shall solve the
momentum equation for the pericdic velocity component in cunjunction with the
phase-averaged turbulent - kinetic energy eguat ion supplemented with relat ions
obtained from extensions of the rapid distortalion theory {e.q. Maxey (181).

FORMULATION
The physical problem concerns the near-wall response of periodically forced
channel, pipe or turbulent boundary layer flow. To fix ideas consider the flat
plate preblem with an externat velocitly of the form

U, (t)=T,+Aexpliut), .. 1)

where t is the time, 'U, is the time-averaged externsl velocity and A is the
amplitude of the imposed pulsatien. In the external region the oscillating
velocity is equivatenl 1o the oscillations in the pressure gradient given by an
inviscid relation
sz-imAexp(imt), (2)
where p is the oscillat ing pressure (with the fluid density absorbed into its
denominal or for convenience}, x is the streamwise coordinate. Differentialions
are indicated by subscripts. Correspondingly, the derivation of the fundamental
equat ions for the mean molion, periodic componeni and turbulence follows From
the splitting of the total flow quantity Q(xi.iJ into the three components

D(xi,l)£E(xi)+a(xi,t)+q'(xi;l), (3)

where @ is the {ime averaged companent, ﬁ the period component and q' denoles
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the turbulence. The derivation of the appropriale conservation rqualjons is now
fairly standard, even for mulliply-interacting periodic modes (sce, e.g., Liu
[193), it suffices only to briefly outline the procedure_and siate the results
at the simplified level. The time average, denoted by { r, is supplemented by
the phase average denoted by <{ )> . If we substitute the decomposition inlo
the full Navier-Stokes equations for an jncompressible fluid, the mran flow
moment um equat ions are obtained by time averaging. If we sublract the mean flow
equal ions from the phase-averaged ones {he momentum cquations of the periodic
component q would be obtained. The crucial link with the turbulence comes from
the modulated turbulent siresses denoted by

rij-cu ul>-ulot UJ {4)
where u! denotes the turbulent velocity components,

The momentum equations for Lhe lurbulence is them obtained by subtracting the
phase-averaqged momentum equat ions frnm those for the total Flow quantity. The
definition of the modulated stresses F;; above gives the clue for their deriva-
lion; the modulated kinetic energy, denoted by R, is but a special case of Fij
or it can be obtained in a direct manner. The equations so obtained are stated
in [19] and in the following we shall deal with the limited versions, through
appropriate arguments, for the physical prablem at hand.

Simplificatigns
The extent of the near wall region normal to the surface is "thin” relative to

the streamwise extent and all x-derivatives {excepl for the extermal pressure)
are neglecled relaljve Lo the derivat ives normal to the wall. The pressure s
constant across the near-wall region. The vertical veleeily is ausent and the
flow is unidirectional and thus u=t(y,L) where y is Lhe coordinate normal to
te wall. The problem is further 51mp1|fled by congidering small perturbal ions
and a linear description suffices. .
Even 'ia this much simplified framework, ais coupled to the modulated and mean
turbulent flow Field through the action of the modulated stress in the U momen-
tum equation, . Rather than to deal wilh transport equalions for the shear
andnormal stre%ng, we choose to include only the modulated turbulent kinetic
encrgy equalion For K. This is molivated by the earlier work of Bradshaw, et
[20] far the mean flow problem. In this case, there is no explicit need to
make closure statements about the elusive pressure-velocity strain correlations
since for the energy equation the action of the presurre gradients is recast
into the "diffusional"” effect due to pressure work. Even wilh nonlinear effecta
included, the diffusional effecls include additicnally the turbulent transport
of R. This, together with the transport dur to pressure work can be neglected
in the near-wall region in favor of viscous diffusion alone.
The simplified momentum equation for the periodic flow and for lhe modulated
turbulent energy are ithen

30_ 3p 3% 9T
a—t--ax‘fva—;’ 3 ' : (5)
RN S ©

3t Txydy xyay Viy?
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where -R,y_ is the mean Reynolds shear stress which, fogether with the mean
velocity U, are considered as given funclions of y. The problem requires the
closure ro!ainon for the modulated viscous dissipal ion rate € and the relation
between Tyy and R. The boundary condilions require the nu-slip condition al the
wall and lthat U and R approach some limit "far” away from the wall. We shall
state the boundary conditjons sfter appruprlate scaling, following eclosure
argument 8.

Closure Arguments. Exlensions of Rapid Distortion Ideas

We refer to Hunt [21) for a review of rapid dislortion theory and some of its
applications and to Maxey [18] for a re-examinalion of the theory with respect
to description of channel ano pipe flows. The main fermal assumption is that
the fluctuating strain rales of the relatively large eddies are much weaker
than the distortion due to the mean shear. for the periurbed, "high" Freguency
turbulent shear flows it is concievable that distortions would take place over
timescales shart compared with the limescales for lhe decay of the relatively
large eddies. In this situation, rapid distortion theory could be justified for
applications {o the frequency range of practiral interesl.

On the other hand, . for unpenturbed turbutent shear flows, where the basic
assumpt ion of rapid.distortion is not entirely satisfied, Tawnsend [22])-[23],
neverlheless has shown that the turbulence struclure can be satisfactorily des-
cribed. Although rapid distortion theory does not provide the practical frame-
work for a turbulence model, it nevertheless provide the ratio of the stresses
to the turbulent kinetic energy interms of an effective distortion slrain. The
quant itative formulation for Lhe effective distortion slrain [18] then provides
lhe remaining closing relation between the siresses and energy. The extensions
of these jdeas to periodically-periurbed turbulent shear Flows are described in
the following.

On the basis of an jnitial axisymmetric spectrum tensor, rather than isotropic,
Maxey [18] computed velocily momenis From the rapid distortion theory relating
the general two-point velocity to such a tensor. The result for the ratio of
the shear stresa to the energy appears in the form

Rx =F(a)K, (7
where R is the shear stress, K the energy and a is taken to be the effective
strain for a locally uniform shear. The funciion F(a} for small strains is of
the form :

F{a)=an/(1+ba?), - (8)

where a=(2/5)[(3/5)}-11/[1+(2/5)] and b={1/35)[(21/58)-15]1/[1+(2/5})]. The initial
anisolropy retio 5 for shear flows is defined as lhe ratio of twice the. larg-
eat normal stresy (1he sireamwise component) to the sum of the two remaining
normal stresses, evaluated at the centerline for pipe and channel flows. Maxey
(18] showed ihal existing experiments give S of about 1.8 for channel flows and
1.2 for pipe flows. For initially isotropic turbulence S=1 and lhe maximum of
the stress ratio F(a) is about 0.74 and this is reducrd to about D.42 when S=2
For locally uniform shear, a relaxation equation deseribing a was proposed by
Maxey [18], which, in the present context, take the form

aa/9t=3U/ay-a/T » (9
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where T is on rddy limescale. The advantage of (9) s thal_it _recovers lhe
limit of equilibrium Flow for long timrscales, in which case 3=JdU/dy; and for
small {iméscales (he rapid dislortion form is obtained, 83 /A =3/3y. Clearly,
proposals for turbulent diffusion of the effective strain [22] and the viscous
diffusion in {he near-wall region, require further careful study. Here, we
regard (9) as basic to our study.

The imposed periodicity upon an exist ing steady external velocily, given by (1}
then suggesis the perturbation of (7)-(9), consistent with (5} and {6}, in the
following form

Ry Pyt KRR, F()F ()43 (@), asaed, USDri. . (10)
Substitution of (10) into (7)-(9), the small perturbation relations obtained
are then

nyﬂ' (ZIR+F* (2)K5 . (1)
33_30 & '
R TR {(12)

Relations (11) and (12) will enable us to replsce F, by R in {5) and (6).

The final closure argument is with regard to the modilated viscous dissipat ion
rate €. We rely on the argument that the amaller eddies coniribute to viscous
dissipation and their 1 imescales are such that they are nearly in equilibrium.
In this case, £ would be a perturbalion from the usual postulated form [25].
For the present problem, we shall deduce {he form for ¢ direcitly from the
perturbation energy equation (6). The argument for the smaltler eddies is that
ter is a local equilibrium between production, given by ihe first two term on
the righl of (6), and.dissipation in the wall region. If we further hypothesize
for purposes of estimating € thst an eddy viscosity relation might hold for
both the mean and modulated stresses, and jf the eddy viscosities are the same
then the two production terms are equal end are equaied to the dissipation rate
€=2T. du/dy. Because of the lacal equilibrium arguments, lhe quasi-steady form
of tHe relation between the stress and enerqgy is used, leading finally to

= _op (o dU ‘

e=2F(a)—d;R . {13)
The system (5},(6) and {11)-(13) then Form the close set of equalions for this
study.

The Boundary Value Problem: The Turbuleni Stokes Layer

Subject to the driving external Flow of the form (1), the perturbation Flow
quant itjes are also assumed lo be hermonic and nfay be represented by the real
part of o

Ay, t)=gty)expliwt) , T "

where the amplitude functions §(y) are complex. Afler substituling flow quant j-
of the form (14) into fhe system {5),(6) and (11)-(13), we Further define non-
djmensional quant it ies ut-Usu,, R: =R__/UZ, u*t=0/A, K*=R/AU,, rg, =f  /AU,, and
w zav/U3, €'=eu/mul, yrayUe/v. We ecdt that A is the amplitude of The periodic
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part of lhe exiernal velocity and that U, its steady part. In applications to
pipe or channel flow problems, {hese will be regarded as the centerline values.
The dimensionless form of (5) and (6) then appear as

ok, .
jwtuTzint” -r:; . . (15) )

- (16)

. At + o+ +  + + +
i K == l_ l+ "_
w ny ! K " -g

where a prime is used to denote differentialion with respeci to y+. The bound-
ary conditions are

- f

y+=0: u+=K+:D, . .

. N ‘ (17)
y o u ‘=K 'z0,

The closure relations (11)-(13) becomes

Py FEK I /RS & .o 0B
s=ATTR (1wt E - (19)
etz2F (UK, {20)

where A+=A/U‘ . The distorlion timescale TV is estimated [18} to be abnut.B.S.

The Numericsl Problem

The system of rquations (15),(16) and (18}-(20) and the boundary conditions (17)
form a boundary vatue problem. The variable coefficients, such as R ,,U"" are
obtained from experimental data in the wall region {c.g., (26)-[30)) 3Kd fitted
with simple functions of y .

The boundary value problem was then solved using SUPPORT Programme [31]. The
method of solut ion uses superposit ion coupled wilh an orthonormalizal ion proce-
ure and a varisble-step Runge-Kutta-Fehlbrrg integrat ion scheme. Each time the
superposition solutions begin fo lose lheir numerical linear independence, the
vectorg are reorlhonormalized before integrstion proceeds. The basic principle
af the algorithm is then to piece together the intermediate orthogonalized sol-
ut iony, defined on the various subintfervals, to abtain the desired solut ions.

RESULTS AND DISCUSSION

We have previously defined the parsmeter 17, which is essentially the ralio of
the Stokes layer thickness /(2v/w), to the near-wall region viseous length
scalewl,. Now 1Y js related to Lhe dimemsionless frequency w' as l';:v'(Z/w .
when the viscous Slokes layer becomes of the same order as the wall reqion
viscous layer, l; A0, in which case w* =0.02. This js the region where sirong
unsteady inferaciions in the near-wail region lake place.

The catculated oscillations in the streamwise velocity is compared with ihe
exerimental data of Binder & Kueny [2] in Figure 1. Their forcing was at low
smplitudes. Az would be expected, the results would be independent of such amp-
litudes. Figure t{a) is for the case of 1¥=5.6 (w*=0.0637) and Figure 1(b) for
F 217 (w'=0.0069). In ihe higher frequency case an amplilude overshool oecurs,
as would be expecled of Stokeslike viscous layers, and Lhis overshoot would
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move towards the wall as the frequency is increased. For Lhe lower frequency
case the amplitude overshoot near the wall js not al all obvious. In general
he calculaled amplifudes agree reasonably well with the data. The phase angle,
rlative to that of the imposed velocity osecillations, compares well with the
dala for the higher frequency case. As in the large-amplitude forcing data [5],
the phase shift near the wall is positive and approaches the Stokes value 7/4.
In the lower frequency case data [2],[5) the phase shift near the wsll could
become negative but in general, the phase shifts are nol as spectaculer ss the
higher frequency ceses.

1] - - a iuil ..
Ll .
‘P‘-L . o . .
0 o . * - : []
20 . .
N
1&- - * . -
'Y 1 _-- o~y ; - = .
] [T - v
+ e
- 1 ] L ]
[} 0 I8 v+ [T [

Figure 1. Comparison between computed oscillations in the sireamwise velocily
and measurements of Binder & Kueny [2], inlerms is the magnitude of u™ and
phase angle @ relativer to their respective imposed values. {(a) w* =0.0837,
{b) w'=0.0069.Y

The oscillating wall shear stress is shown in Figure 2, in comparison wilh the
measyrements of Binder, et al. [5]. The magnitude, normalized by the Stokes
value at the same frequency, is given in Figure 2(a): The phase sngle ¢, is
referenced to the phase of the free stream velocity, is shown in Figure E(b).
Although the present theory is concerned with the relatively "high" frequency
region of I§=10 (w'%0.02), the results are nevertheless shown for he extended -
region to Ik =70 (w*=D.0004), covering the low frequency, quasi-steady region.
The reqion of validity of the present theory can thus be examined. As expected,
Figure 1{a) shows thal the compuled amplitude of the wall shear stress is in
good agreement. with the deta in the region 13 less than about 20 {w*<0.005).
At these "high" freguencies, the wall shear stress amplitudes dip below the
Stokes value as in the experiments. This behavior has also been observed by
Parikh, et al. [4]. At larger values of If the wall shear stress magnitude is
underest imated relative to observations. The computed phase shift in Figure
2{b)also agrees favorsbly with data for 1%<15 (*>0.0089). In the low frequency
range the the phase angle is'uvnre:jtjmalra. :

The computed wall shear stress is also compared with the data reported by Mao &
Henratty [32], in Figure 3. The magnitude of the oscillatory wall shear stress
is normalized by the mean wall shear siress and by the dimensjonless forcing
velocity and is equivalent to the A defined previously. Figure 3la) shows {hat
the computed value is in good agreement wilh observabions for w*> 0.005 as is
expected. The phase angle in Figure 3{b)} behaves qualitatively as observal ions
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in the frequency region w'>0.015. It approaches the asymplotic value of about
7 /4, In the low frequency rtegion, the phase angle is overestimated.

&=
Wl 2 | v

1 1 1
20 L yo 40 0 &0

figure 2. Oscillations of the wall shear siress compared with measurements of
Bjnder, et al. [5], including forcing at large amplitudes: A/U,=0.10,@; 0.13,m;
0.17,4; 0.19,0; 0.27,4.; 0.60,+; 0.70,0. (a) amplitude, (b) phase angle.

l.oL . [
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Figure 3. Osciltations of the wall sheesr stress compared with measurements of
Mao & Hanratty [32]: ©,®; Remsprian & Tw [33): O . (8} smplitude, (b) phase
angle.

We recall the definition of the modulated iurhulent normal stress due to the u-
component of Lhe Lurbulence fluctustions: E ., s<u'?»-u'?. This guantity is of
interest here in trkat it has been measured byxﬁlnder. et al. [5). The comparison
between our compuled results and data is given in Figure &4 for the two values
of w*=0.03 and 0.0038. The main features of the experimentally obtained struc-
lgre is obtained. The peak values of T x and its y * localion both decrease ss
w incresses. Infact the location of the peak is actually well described by the
theory. However, Figure & indicates that this component of the normal stress is
underest imated- by the theory. This might be due the overestimation of viscous
dissipation rates near the wall. Although not shown, the computed phase angle
indicates that T _ lags behind u. This lag increases away from the wall and is
increased - as the frequency increases. And, in accordance wilh observalions
(e.g., [2),[51,{10]), it ia clearly demonstrated that the modulated turbulence
struclure cannol be associated simply with the oscillaling velocity.
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Figure 4. Modulated turbulent narmal Figure 5. Ratio of modulated turbulent
stress T /U2 compared with mEasure - shear stress to kinetic energy.

ments of é]nder, et al. [S]. w'=0.03
m, v-0.0038 e.

The modulated turbulent shear slress, which is not shown here, has a peak in
in the amplitude for a given frequency. As the frequency is increased, the peak
decreases and moves closer to the wall. In contrast to 4', the shear stress
varies considerably less wilh y+. Thus no local relationship between the two
uantities can be established in the near-wall region. In order to examine the
depariure of the modulated Flow from structural equilibrium, we examine f1he
ratio of the modulated shear stress to modulated turbulence emerqy. For equi-
liprium flows Lhis raiijo should be the seme as that for steady flows. The amp-
litudg of this ratio is shown in Figure 5. It is clear that the departure from
equ]llbrlum |ncreaqEH with freguency and reaches s maximum near the #wall
(3<y*<8). For y*>20 the modulated Flow behaves like a quasi-steady one. This is
ansistent with the structure of oscillating turbulent boundary layers {10]. The
resulis also show that the phase angle of the modulated shear stress leads hat
of the energy and that this lead incresses with Frequency. The maxima of the
phase lead occurs near the wall and decresses rapidly away.
This concludes our much abrevisted description of the fluid dynamics of the
near-wall response of periodically forced turbulent flows. On the one hand, the
comparison with observation is sufficiently encouraging that it seems worth-
whle to develop ideas from rapid dislortion theory further For use in the des-
criplion of a class of unsteady turbulent shear flows, including the fascinat-
ing problems involving coherent slructures and their conlrol {15). On Lhe of her
hand, the work described in this paper forms {he basis for a Full discussion of
he acoustical aspects and implications [34], which will form Part 11 of this
series to be reported subsequently.
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