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- ABSTRACT
The near-wall response ‘of periodically-forced turbulent flows is considered and
we deal with the fluid dynamical and computational aspects of the problem in
this paper. The corresponding. modulated turbulent Stokes layer problemis solved
with extensions of the rapid distortion theory, precisely in the frequency range
where quasi-steady assumptions would fail. The computed unsteady velocity osci-
llat ions and modulated turbulent stresses compare favorably with observations in
the "non—quasi—steady" frequency ranges. This forms the basis for the acoustical
acpects of the problem to be reported subsequently.

INTRODUCTION
Fulsating turbulent flow in pipes and channels and over flat plates has received
special recent attention since'it provides relativelysimple configurations for
fundamental studies of unsteady turbulent shear flows and their possible control
through forcing. Karlsson [1] was the first to study pulsating turbulent boundary
layers over a flat plate. Recently Binder & Kueny [2], Cousteix, et al. [3],
Parikh, et al. [4] and Binder, et al. [5] studied experimentally pulsating flows
in channels and' Tu it Ramaprian and Shemer, et a1. [7] addressed the pipe flow

problem. A compilation of existing data on pulsatingI wall-bounded turbulent

flows can be found in Carr [8].
One general result from the. experiments is that no preferred frequencies were
found, in contrast to excited free turbulent flows. However, for wall—bounded
flows the modifications of the turbulence structure by pulsations nevertheless
do depend on the frequency range. At low frequencies, Carr [8] pointed out that
a quasi—steady behavior is observed as would be expected. The time— or Reynolds-
averaqed mean velocity profile is practically the same as that for steady flow
with the same local external flow. In this case, although there is significant
variations in the turbulence energyand shear st ress, their ratio remains at the
quasi-steady value. As the imposed oscillation frequency is increased beyond a
"critical" value, there appear significant interactions between the periodic
oscillations and the turbulence structure. Mizushina, et al. [9] relates this
critical frequency to the turbulent burst in the. flow and sho that the intensity
of turbulence no longer follows that observed jn-the unperturbed flow case. In
the same post-critical frequency range Ramaprian, et al. [10] also observed that
the turbulence structure near the wall is perturbed out of equilibrium. The
appropriately phased—averaged turbulence intensities and shear stress experience
rather large phase shifts which are frequency dependent .
Several attempts have recently been made at computing periodic turbulent shear
flows at various levels of modelling effort [3],[6],[11]-[13]. The main defect:
being that closure relations were identical to that used for steady flows
and thus have not been successful, except in the the quasi-steady region,, in. the
comparison with observations beyond the "critical" frequency region as pointed
by Hanjalié o Stosic [12]. Furthermore, in these models the near-wall velocity
was taken. to be that given by the law of the wall for steady flows. Thus the
important issue of the turbulent Stokes layer was completely circumvented. More
recently, Kebedc. et al. [11;], using the full Reynolds stress model but with
quasi-steady closure. computed periodic turbulent flow properties down into the
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viscous layer region. For application to pulsating turbulent flows, however, the

results were time—step dependent and deviated considerably from observations.

0n the basis of their observations, Binder z'x Kucny [2] point out the relevant

length scale of the near-wall region being that. of the viscous Stokes layer i/v/m

to that of the near-wall viscous layer in turbulent shear flow \J/U. , where v

is the kinematic viscosity, u) the forcing frequency and U. the frictional velii—

city. In fact, the "critical" frequency is in the vicinity when the ratio of

the two layers is of order unity, that is, when the parameter Izz/ZUi/w is of

the order of ten. In this parameter region the dynamical effects of the period—
ic forcing strongly influences the wall-region viscous layer of the turbulent

shear flow. In fact Cousteix [15] concluded that the correct description of the

near-wall regionwould be. essential towards obtaining the wall shear stresses
at the intermediate and high Frequency regions. lhe socalled "critical" fre—

quency reqion,is now understood interms of the parameter I; being of order ten

or thereabouts.
In the present paper we focus our attention on an appropriate. but simplified,

modelling of pulsatin'g' turbulent flows at the "high frequency” region interms

of the parameter I; where quasi-steady models have beenknown to be inadequate.

The theoretical consideration naturally follows the feasability indicated by

experiments [16],[17] in separating the timl_~—depi:‘ncientY phase-averaged field
from the time-independent Reynolds-averaged field. In fact, Carr's [B] suryey
indicate that experimentally the mean .field is not affected by the pulsations

and can infect be obtained from quasi-steady models which we shall regard as

being given here. for the near-wall phased-averaged field, we shall solve the

momentum equation for the periodic velocity component in conjunction with the
phase-averaged turbulent ' kinetic energy equation supplemented with relations

obtained from extensions of the rapid distortation theory (6.9. Maxey [13]).

FURMULAIION

The physical problem concerns the near—wall response of periodically forced

channel, pipe or turbulent boundary layer flow. lo fix ideas consider the flat

plate problem with an external velocity- of the form

Un(t):U°+Aexp(iwt), (1)

where t is the time, T!” is the time-averaged external velocit.y and A is the

amplitude of the imposed pulsation. In the external region the Oscillating

velocity is equivalent to the oscillations .in the pressure gradient given by an

inviscid relation

Exhimkexphwt), (2)

where 5 is the oscillating pressure (with the fluid density absorbed into its

denominator for convenience), x is the streamwisc coordinate. Differentiations

are indicated by subscripts. Correspondingly, the derivation of the fundamental

equati0ns for the mean motion, periodic component and turbulence follows from

the splitting of the total flow quantity 0(xi,t) into the three components

ntxm)=§(xi)+fitxi,t)+q'(x,;|). . (3)

where tit-is the time averaged component, E. the period component and q' denotes
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tht= turbulence. The dcrivat ion of the appropriate conservation cquat ions is now

fairly standard, even for multiply-interacting periodic modes (see, e.q., Liu

[19]), it suffices only to briefly outline the procedure—and state the results
at the simplified level. The time average, denoted by ( )', is supplemented by
the pnase average denoted by <( )> . If we substitute the decomposition into
the full Navier-Stokes equations for an incompressible fluid, the mean flow

momentum equations are obtained by time averaging. If we subtract the mean flow
equations from the phase-averaged ones the momentum equations of the periodic

component a would be obtained. The crucial link with the turbulence comes from

the modulated turbulent stresses denoted by

:<u;u3>-u;u'- , (4)

where u! denotes the turbulent velocity compenents.

The momentum equations for the turbulence is then obtained by subtracting the
phase-averaged riiomcnt um equations from those for the total flow quantity. The

definition of the modulated stresses Fi- above gives the clue for their deriva—
tion; the modulated kinetic energy, denoted by R, is but a special case of Fij-
or it can be obtained in a direct manner. The equations so obtained are stated
in [19] and in the following we shall deal with the limited versions, through
appropriate argumentsI for the physical problem at hand.

Simplifications
The extent of the near wall region normal to the surface is "thin" relative to
the st reamwise extent and all x—derivatives (except for the external pressure)

are neglected relative to the derivatives normal to the wall. The pressure is

constant across the near-wall region. The vertical 'velccity is-a‘uscnt and the.
flow is unidirectional and thus fi=fi(y.t) where y is the coordinate normal to
to wall. The problem is further simplified by considering small perturbations
and a linear description suffices. .. ’ , '
Even'is this much simplified framework, G is coupled to the modulated and mean

turbulent flow field through the act ion of the modulated stress .in the u momen-
tum equation, Fx . Rather than to deal with transport equations for the shear
andnormal st re. s, we choose to include only the modulated turbulent kinetic
energy equation for K. This is motivated by the earlier work of Bradshaw,'et
al. [20] for the mean flow problem. In this case, there is no explicit need to
make closure statements about the elusive pressure—velocity strain correlations
since for the energy equation the action of the presurre gradients is recast
into the "diffusiOnal" effect due to pressure work. Even with nonlinear effects
included, the diffusional effects include additionally the turbulent transport
of K. This, together with the transport dur to pressure work can be neglected
in the near-wall region in favor of viscous diffusion alone.

The simplified momentum equation for the periodic flow and for the modulated

turbulent energy are then

 

   

36 gfi a'fi_a_Fxa—Luaxwa—y—i 3y Y , _ (5)

t...
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where —§xy_ is the mean Reynolds shear stress which, together with the mean
velocity U, are considered as given functions of y. the problem requires the
closure relation for the modulated viscous dissipation rate 3 and the relation
between fly and R. the boundary conditions require-the nu—slia condition at the
wall and that G and R approach some limit "far" away from the wall. We shall
state the boundary conditions after appropriate scaling, following closure
arguments. -

  

  Closure Ar uments. Exle "ons of Ra id 0'
We refer to Hunt for a review of rapid distortion theory and some of its
applications and to Maxey [18] for a re-examination of the theory with respect
to description of channel ano pipe flows. lhe main fc-rmal assumption is that
the fluctuating strain rates of the relatively large eddies are much weaker
than the distortion due to the mean shear. For the perturbed, "high" Frequency
turbulent shear ,flows it. is concievable that distortions would take place over
timescales short compared with the timescales for the decay of the relatively
large eddies. In this situation, rapid distortion theory could be. justified for
applications to the frequency range of practical interest.
On the other hand,.for unperturbed turbulent shear flows, where the basic
assumption of rapid.distortion is not entirely satisfied, lownscnd [ZN-[23],
nevertheless has shown that the turbulence structure can be sat isfactorily des-
cribed. Although rapid distortion theory does not provide the practical frame-
work for a turbulence model, it nevertheless provide the ratio of the stresses
to the turbulent kinetic energy interms of an effective distortion strain. The
quantitative formulation for the effective distort ion strain [18] then provides
the remaining closing relation between the stresses and energy. lhe extensions
of these ideas to periodically—perturbed_turbulent shear flows are described in
the following.
On the basis of an initial axisymmetric spectrum tensOr, rather than isotropic,
Maxey [1B] computed velocity moments from the. rapid distort ion theory relating
the general two—point velocity to such a tensor. The result. for the ratio of
the shear stress to the energy appears in the form

 

nythlk, (7)

w_here it y is the shear stress, K the energy and :1 is taken to be the effective
strain for a locally uniform shear. The function Hz!) for small strains is of
the form

7(a)=aa/(1+bo'), - (8)-

where a=(2/5)[(3/S)—1]/[1+(2/s)] and b=(1/35)[(21/5)—15]/[1+(2/S)]. the initial
anisotropy ratio 5 for shear flows is defined as the ratio of twice the. larg—
est normal stress (the streamwise component) to the sum of the two remaining
normal stresses, evaluated at the centerline for pipe and channel flows. Maxey

[18] showed that existing experiments give 5 of about 1.8 for channel flows and

1.2 for pipe flows. For initially isotropic turbulence 5:1 and the maximum of
the stress ratio F(:x) is about. 0.74 and this is reduced to about 0.112 when 5:2

For locally uniform shear, a relaxation equation describing :x was proposed by
Maxey [18], which, in the. present. context, take the form

3:/3t.=3U/3y-o/l t (9)
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where l is an eddy timescale. the advantage of (9) is that_it recovers the
limit of equilibrium flow for long timescales, in which case 5:.ldU/dy; and for

small timescales the rapid distortion form is obtained, aa/Btzau/By. Clearly,
proposals for turbulent diffusion of the effective strain [22] and the . scous

diffusion in the. near-wall region, require further careful study. Here, we

regard (9) as basic to our study.
The imposed periodicity upon an existing steady external velocity, given by (1)

then suggests the perturbation of (7)-(9), consistent with (5) and (6), in the
Following form

 

ny xy+ny, K=R+R, F(u):F(§)+5"(§). a£5+a, u=fi+fi. _ (10)

Substitution of (10) into (7)-(9), the small perturbation relations obtained

are then

ny=r(3)R+F'G)Ea , . (11)

85 36 Ft -fi 87.? , (12).

Relations (11) and (12) will enable us to replace Fx by R in (5) and (6).
The Final closure argument is with regard to the modulated viscous dissipation

rate 5. We rely on the argument that the smaller eddies contribute to viseous

dissipation and their timescales are such that they are nearly in equilibrium.

In this case, E would be a perturbation from the usual postulated form [25].
For the present problem, we shall deduce the form for 2 directly From the

perturbation energy equation (6). The argument For the smaller eddies is that

ter is a local equilibrium between production, given by the first two term on

the right of (6), andtdissipation in the wall region. If we further hypothesize

for purposes of estimating E that an eddy viscosity relation might hold for

both the mean and modulated stresses, and if the eddy viscosities are the same

then the two production terms are equal and are equated to the di sjpation rate

E=ZE dU/dy. Because of the local equilibrium arguments, the quasx—steady form

of the relation between the stress and energy is used, leading finally to

~ — U
e=ZF(a)-37R . (13)

 

lhe system (5),“) and (11)-(13) then form the close set of equations for this
study.

the Boundar Value Problem: lhe Turbulent. Stokes La er

Subject to the driving external flow of the ram (1), the perturbation Flow
quantities are also assumed to be harmonic and may be represented by the real
part of I

fi(y,t)=g(y)exp(iwt) . (1b)

where the amplitude functions My) are complex. After subst itut.ing flow quanti—
of the form (14) Into the system (5);“) and (11)-(13), we further define nnh-
dimensional quantities u+=u/u., 52* :9 /u;, u+=0/A, KER/AU r+ =9 mu andva/ug, 5+:ev/AUZ, y+=yU./u. We ‘ryoca‘P’i that A is the ampiiliidgyorxihe ozriodic
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part of the external velocity and that Ll, its steady part. In applications to
pipe or channel flow problems, these will be regarded as the centerline values.
The dimensionless form of (5) and (6) then appear as

. + + , s 4-,. + .
in) u :m) +u ~rx; , . (15)

.++_ 4- + + + +,, +in) K -4ny '- xyu '+K —£ , (16)

where a prime is used to denote differentiation with respect to y+. The bound-
ary conditiOns are

 

y+:0:. u+=K+:D,

yum: u+' K -:0. (17)

lhe closure relations -(‘l‘t)-(1}) becomes

r’;y= F(§)K++(d1nF/d§)R:yfi . g (19)

5=A+I*u*'/(1+m*1‘) , 7 (19)

s*=zr(§)u“-1<+ , (20)

where A+:A/ll, . The distortion timescale 1+ is estimated [13] to be about.3.5.

The Numerical Problem
lhe system of equations (15),(16) and (18)—(20) and the boundary condit ions.(17)
form a boundary value problem. The variable coefficients, such as R‘ ,U” are

obtained from experimental data in the wall region (e.q., [26]—[30]) ’éKu fitted
with simple functions of y. Y

lhe boundary value problem was then solved using SUPPORT Programme [31]. the
method of solution uses superposition coupled with an orthonormalizat ion proce—

ure anda variable-step Runge—Kutta-Fehlberg integration scheme. Each time the

superposition solutions begin to lose their numerical linear independence, the

vectors are reorlhonormalized before integration proceeds. The basic principle

of the algorithm is then to piece together the intermediate orthogonalized sol-
utions, defined on the various subintervals, to obtain the desired solutions.

RESULTS AND DISCUSSION
We have previously defined the parameter 1*, which is essentially the ratio of

the Stokes layer thickness /(Zv/m). to tshe near-wall region viscous len th
scaleV/U," Now ]+ is related to the dimensionless frequency m+ as [gm/(Um .
when the viscmis Stokes layer becomes of the same order as the wall region
viscous layer, 2:10, in which caseui =U.UZ. lhis is the region where st ronq
unsteady interactions in the near-wall region take place.

The calculated oscillations in the streamwise velocity is compared with the‘

exerimental data of Binder d: Kueny [2] in Figure 1. lheir forcing was at low

amplitudes. As would be expected, the results would be independent of such amp—

litudes. Figure 1(a) is for the case of l'f:5.6 (m+:0.0637) and Figure 1(b) for

f=17 (630.0069). In the higher frequency case an amplitude overshoot occurs,

as would be expected of Stokeslike viscous layers, and this overshoot would
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move towards the wall as the frequency is increased. For the lower frequency
case the amplitude overshoot near the wall is not at all obvious. In general
he calculated amplitudes agree reasonably well with the data. the phase angle,
rlative to that of the imposed velocity oscillations, compares well with the
data for the higher frequency case. As in the large-amplitude forcing data [5],
the phase shift near the wall is positive and approaches the Stokes value 1t/4.
In the lower frequency case data [2],[5] the phase shift near the wall could
become negative but in general, the phase shifts are not as spectacular as the
higher Frequency cases.

 

Figure 1. Comparison between computed oscillations in the streamwise velocity
and measurements of Binder a. Kueny [2]. interms is the magnitude of u*and
phase angle :4) relative' to their respective imposed values. (a) in“ :0.0537,
(b) m+=o.ous9.”

lhe oscillating wall shear stress is shown in Figure 2, in comparison with the
measurements of Binder, et a1. [5]. the magnitude, normalized by the Stokes
value at the same frequency, is given in Figure 2(a): The phase angle (a , is
referenced to the phase of the free stream velocity, is shown in Figure 3(b).
Although the present theory is concerned with the relatively "high" Frequency
region of l§~10 (w"’='fi.02), the results are nevertheless shown for the extended
region to l§=70 (m+='0.0004), covering the low Frequency, quasi-steady region.
The region of validity of the.present theory can thus be examined. As expected,
Figure 1(a) shows that the computed amplitude of the wall shear stress is in
good agreement. with the data in the region 1; less than about 20 (m+<0.005).
At, these "high" frequencies, the wall shear stress amplitudes dip below the
Stokes value as in the experiments. This behavior has also been observed by
Parikh. et at. [It]. At larger values of the wall shear stress magnitude is
underestimated relative to observations. The computed phase shift in Figure
2(b)also agrees favorably with data for lf<15 ((350.0089). In the low frequency
range the the phase angle is overestimated.

The computed wall shear stress is also compared with the‘ data reported by Man A:
Hanratty [32], in Figure 3. lhe magnitude of the oscillatory wall shear stress
is normalized by the mean wall shear stress and by the dimensionless forcing
velocity and'is equivalent to the A defined previously. Figure 3(a) shows that
the computed value is in good agreement with observations for u+> 0.005 as is
expected. The phase angle in Figure 3(b) behaves qualitatively as observations
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in the frequency region w'>D.D1S. It approaches the asymptotic value of about

11 M. In the low frequency region, the phase angle is overestimated.

LE
um

       0 IO 20 30 y. 40 50 GD 79

Figure 2. Oscillations of the wall shear stress compared with measurements of

Binder, et, al. [5], including forcing at large amplitudes: A/UD:D.1D,O; 0.13.l;

D.17,l; U.t9,0; 0.27.0; U.6Cl,+; 0.70.13. (8) amplitude, (b) phase angle.

  a we use at GA! to

Figure-3. Oscillations of the wall shear stress compared with measurements of
Mao & Hanratty [32]: 0,0; Ramaprian .5 Tu [33]: D . ,(a) amplitude, (b) phase
angle.

We recall the definition of the modulated turbulent normal stress due to the u-
component of the turbulence fluctuations: {- =<u">-F’. This quantity is of
interns: he”, i.n'that.it has been measured byxginder, et: al. [5]. the comparison
between our computed results and data is given in Figure A for the two values

of Wm.” and 0.0038. the main features of the experimentally obtained st ruc-
ture is obtained. the peak values of Fxx and its y+ location both decrease as

u increases. Infect the location of the peak is actually well described by the

theory. However, Figure [1 indicates that. this component of the normal stress is
underestimated-by the- theory. This' might be due the overestimation of Viscous
dissipation rates near the wall. Although not shown, the computed phase angle

indicates that E“ lags behindu. this lag increases away fromthe wall and is
increased as' the frequency increases. And, in accordance with observations

(e.g., [2],[5],[1D]), it. is clearly demonstrated that the modulated turbulence
structure cannot be associated simply with the oscillating velocity.
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Figure Modulated turbulent normal Figure 5. Ratio of modulated turbulent
stress r /U: compared with measure- shear stress to kinetic energy.
ments ofxéindcr, et al. [5]. w+:0.0}
I, w*=n.0033 o.

The modulated turbulent shear stress, which is not. shown here. has a peak in
in the amplitude for a given frequency. As the Frequency is increased, the peak
decreases and moves closer to the wall. In contrast to fi'.the shear stress
varies considerably less with y+. Thus no local relationship between the two
uantities can be established in the near-wall region. In order to examine the
departure of the modulated flow From structural equilibrium, we examine the
ratio of the modulated shear stress to modulated turbulence energy. For equi-
librium flows this ratio should be the same as that for steady flows. The amp—
litude of this ratio is shown in Figure 5. It is clear that the departure from
equilibrium increases with frequency and reaches a maximum near the Mall
(3<y+<8). For y*>20 the modulated flow behaves like a quasi—steady one. This is
onsistent. with the structure of oscillating turbulent boundary layers [10]. The
results alsoshow that the phase angle of the modulated shear stress leads that
of the energy and that this lead increases with frequency. The maxima of the
phase lead occurs near the wall and decreases rapidly away.
This concludes our much abreviated description of the fluid dynamics of the
near-wall response of periodically forced turbulent flows. 0n the one hand, the
comparison with observation is sufficiently encouraging that it seems worth—
whle to develop ideas From rapid distortion theory further for use in the des-
cription of a class of unsteady turbulent. shear flows, includin the Fascinat-
ing problems involving coherent structures and their control [19 . On the other
hand, the work described in this paper forms the basis for a Full discussion of
he acoustical aspects and implications [36], which will form Part II of this
series to be reported subsequently. '
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