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1 . INTRODUCTION

The problem of predicting the response of a complex system to high frequency
random loading may be approached using Statistical Energy Analysis (SEA) which
seeks to relate the mean energy stored in different parts of the system to the
distribution of input power {1]. To this end the system is modelled as a
collection of subsystems whose mean energies and external power inputs are
related via a Set of linear equations, the coefficients of which are expressed
in terms of quantities known as the loss factors and the coupling loss
factors. Comprehensive reviews of SEA are given in references [2] and [3]
where the historical background of the method and the physical principles
involved are discussed in detail. For a complex dynamic system the
theoretical justification of the SEA equations is normally based on either a
diffuse wave field approach or a modal approach to the system dynamics. In the
latter case the arguments are generally based on a heuristic extension of the
exact results which may be derived for the power flow between two coupled
oscillators or, more generally, the approximate results which may be derived
for two coupled oscillator sets. A number of studies (for example. references
[3-51) have considered the theoretical background to SEA in detail, and
considerable progress has been made in identifying the conditions under which
the method is likely to yield reliable results. The aim of the present
analysis is to complement existing approaches with a derivation of the SEA
equations which is based on a continuum analysis of a general coupled dynamic
system. It is shown that the general form of the SEA equations is widely
applicable providing a suitable energy definition is adopted, and expressions
for the coupling loss factors are derived in terms of the Green functions of
the system. The conditions under which the continuum results reduce to the
standard SEA theory are discussed, and particular attention is paid to the
role of "non-direct" coupling loss factors.

2. DERIVATION OF THE SEA EQUATIONS

The present analysis is concerned with the vibration of a general system which
is composed of N coupled subsystems. The j'th subsystem is taken to have a
single scalar response variable uJ(x,t) which for harmonic Vibration of
frequency In) is governed by theequation of motion

2 . c '_ _ + , 1Ljiuj) p14» (1 :11)!” = Elbow) P10: w) ( )

where uj(x,U) is the complex amplitude of the response. L1 is a. differential
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operator, 9: is the volume density (or equivalent) and 71 is a dissipation

factor. The distributed force Fr(x,u) represents an external load. while the

force F'f(x,u) represents a load arising from coupling to another subsystem.

The latter force will generally appear only if subsystem j forms the boundary

of another subsystem; for example a plate forming one boundary of an airspace.

with the present approach a structural member consisting of a beam (with

coincident mass centre and shear centre) would be modelled as four subsystems

with response variables corresponding to twist, axial displacement, and

lateral displacement in two perpendicular directions. Similarly the bending

vibrations of a plate would be modelled as a single subsystem with uj(x,t)

equal to the out of plane displacement, while an airspace would be modelled as

a single subsystem with uj(x,t) equal to the dynamic pressure. For structural

elements whose various displacement components are governed by coupled

differential equations (as for example in the case of a shell) the following

analysis must be modified slightly, as detailed in reference [6], although the

final results are not significantly effected.

If equation (1; is multiplied by the complex conjugate of the response

velocity (-iuuj) and integrated over the subsystem volume (or equivalent),

then the real part of the resulting equation yields the following power flow

relationship

91 = ZWJTJ + R) (2)

where Q) is the time average of the input power, TJ is the time average of the

total kinetic energy stored in the subsystem, and R1 is the time average of

the power which is transferred to the neighbouring subsystems. “the

coupling between the subsystems is conservative then the sum of R] over j will

be zero. Equation (2) is equally valid for the case of random excitation

providing the notion of a temporal average is replaced with that of a

statistical average, and the frequency band of interest is relatively narrow

so that the frequency which appears on the left side of the equation may

reasonably be replaced by a centre frequency (or alternatively, the

dissipation factor is inversely proportional to frequency). Statistical

Energy Analysis postulates that R} is proportional to the energy difference

between neighbouring subsystems: the validity of this premise is investigated

in what follows.

The response of the coupled system to the harmonic loading “(1.0) which

appears in equation (1) may be written formally as

u.(x,w) = Z I G. (x.y,u)F (muddy (3)
JV, J .1

where V] is the volume (or equivalent) occupied by subsystem j and cu(x,y.u)

is a Green function representing the response at location It on subsystem i to

a harmonic point load situated at location y on subsystem j. Reciprocity

implies that the Green functions which appear in equation (3) are symmetric.
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In SEA it is frequently assumed that the applied loading consists of
uncorrelated ("rain on the roof") excitation such that 'the cross-spectrum'
between Fify,t) and “(1.0 has the form

s”(y.z.U) = fin‘zMy-zlai (4)

where at represents the intensity of the excitation acting on subsystem i.
which is assumed to be constant over a frequency band of interest 0. It may
be shown [6] that equations (3) and (4) lead to the results

'I' = [plfla ; o = Iqla (5).(6)

where T, Q, and a are vectors containing Ti, Qt, and ai- respectively, the
diagonal matrix [9] contains the densities pi, and h and [q] are given by

n =
.j A {51$ mz|GU(x.Y.w) Izdxdydu (7)

q‘ = Re{ I I iuGHIx,x,m)dde-:} (8)
V 0

Equations (5) and (6) may be used to derive a relationship between the input
power and the subsystem energies in the form

'u"1'r m-(n)o = cs ; c = um [q1n"m : z = ntp'
where the new subsystem energy measure it has been introduced. This measure
is similar to that introduced by Smith [7] in the study of strongly coupled
systems. Equation (2) and the summation property of the power flows R] may be
used to show that equation (9) can be rewritten in the form

Q. = (ncnln‘i:K + 1% ucnunlflrhj) (lZ)

_ _ _ -1nin| — (2/7l)1ipiq| unnun‘ — (l/nmuqiqj (13).(14)

where we is the centre frequency of the excitation and the coefficients mm
and mum are defined by equations (13) and (14). Equation (12) is precisely
the standard form of the SEA equations although the relationship between the
coefficients defined by equations (13) and (14) and tha tannin loss factors
and coupling loss factors of SEA is not immediately apparent. similarly the
energy definition of equation (11) generally differs from the nodal energy
definition which is normally used in SEA. It is shown in the following
section that under certain conditions the standard SEA parameters may be
recovered from equations (11), (13). and (14).
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Although the present analysis has focussed on "rain on the roof“ excitation,
it is shown in reference [6] that equations (in-(14) are equally valid for
the case of random point loading providing the power inputs and subsystem
energies are averaged over the range of possible point load locations. Also,
random system properties may be incorporated into the above analysis by
averaging the various matrices (and therefore effectively the Green functions)
over the statistical distribution of the system properties.

3. WEAK COUPLING APPROXIMTXONS

The concept of weak coupling plays a central role in SEA. although there is no
single agreed definition of weak coupling [21. In the present analysis the
coupling will be said to be weak if

IGUHJMHZ = Me") (15)

where s is a small parameter and n represents the least number of couplings
which lie between subsystem i and subsystem j. Thus n=1 if the subsystems are
directly coupled, and n=2 if the shortest route between the two subsystems is
across one intervening subsystem.‘ There are two main classes of system which
can be expected to meet the requirements of equation (15), being (i) those
systems which have a high wave decay rate such that the reduction in the
energy of a wave which crosses a subsystem is 0(1-5), and (ii) those systems
whose couplings have a wave transmission coefficient which is 0(6). It can be
noted that various plate junctions tend to have a low wave transmission
coefficient [1] even though the mechanical coupling at such junctions is
strong. From a modal, rather than a wave, point of view it can be shown that
the present weak coupling condition will be met if the generalized coupling
coefficiiehts between the nodal coordinates of the connected subsystems are of
order 5 . The present definition of weak coupling therefore encompasses
most previous definitions [2] without limiting the analysis to either a wave
or a modal approach.

Equation (14) indicates that the coupling loss factors nu are dependent on
the inverse of the matrix Hwhich is defined by equation (7). This matrix may
generally be written in the form

n = [11+ n1 +n2 + ....+n_ (16)

where [1.] represents the diagonals of It and each off—diagonal entry of H is
contained in one o! the matrices AI. If the minimum number of couplings which
separate subsystem i from subsystem j is n, then flu is assigned to the matrix
An. Thus the ij'th entry of AI will be zero unless subsystems i and j are
directly coupled. The term m which appears in equation (16) represents the
maximum "width" of the system. If the weak coupling condition of equation
(15) is met then [A] will be 0(1) while An will be on"). The inverse of H
may then be written approximately in the form
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n" = [f‘] - Whip": - [1"]Azn“) + [fluipflujnfl + (17)

which may then be used together with equation (14) to calculate the coupling
loss factors. It can be seen from equations (9), (10), (12) and (17) that the
present definition of weak coupling implies that the coupling loss factors
will he of a lower order of magnitude than the loss factors. a condition which
has formed the basis of a number of previous definitions of weak coupling [2],

ln SEA it is normally assumed that the coupling loss factor nij is zero unless
subsystems i and j are directly coupled. In the present approach this is
equivalent to retaining only the first two terms on the right of equation
(17), which may initially seen to be justified on the grounds that the
remaining terms are of second and higher order. However. a Statistical Energy
Analysis normally consists of (i) calculating the loss factors and coupling
loss factors, and (ii) inverting the coupling loss factor :atrix to yield the
subsystem energies for a given distribution of input power. Step (ii) is
equivalent to using the loss factors and coupling loss factors to estimate the
matrix H, since equations (9) and (10) inply that

1
(18): nrq“1xrq' m

In practical situations only one of the subsystems may be subjected to
excitation. in which case the second and higher order terms which appear in H
are vitally important as in their absence equation (18) would predict a
non-zero response only in those subsystems which are directly coupled to the
excited subsystem. The second and higher order terms which appear in equation
(17) may not therefore be lightly discarded if the calculated coupling loss
factors are to yield an estimate of H which is accurate beyond first order.
To assess the conditions under which "non-direct” coupling loss factors may
reasonably be neglected it is convenient to write the inverse of h in the for:

-1 _ . y
H — [o] + B1 + 32 + . . . . ..B (19)

where, as in equation (16), the ij'th entry of Bu is zero unless the mininuo
distance between subsystems i and j is across n couplings. The matrix 31
therefore accounts for the direct coupling loss factors, while the non-direct

' coupling loss factors are contained in the subsequent matrices. Equation (17
implies that [6] is 0(1) while BI is 0(6). By inverting equation (19) and
making use of the structure of the an matrices it may be shown that the
leading order terms of each of the An matrices which appear in equation (16)
may be expressed solely in terms of El providing that Bn 1 0(c ) for n)1.
Under this condition the inclusion of the first two terms in either equation
(17) or equation (19) is sufficient to yield a reliable estimate of the system
response.

The condition Bn t 0(c") for n)1 may be re-expressed in terns of the coupling
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loss factors as m) 1 NC") for n)l. where n is the minimum number of
couplings which lie between subsystems i and j. The physical significance of
this requirement may be inferred by considering the situation in which only
subsystem j is subjected to excitation. This will produce a response in
subsystem j of 0(1) and a response in subsystem i of We“). The response of
the subsystem immediately preceding 1 on the shortest path between i and 1‘
will he Olen-l). Given that the coupling loss factor is 0(2) for directly
coupled subsystems, equation (6) predicts that the power flow into in system i
which is directly attributable to its nearest neighbour is 0(£)x0(£ )=0(C )-
Further. the indirect contribution to the power flow into subsystem i due to

the energy content of subsystem j will be 0(nu) x 0(1). The requirement that
qij ( 0(5 ) is therefore equivalent to requiring that the "direct" power flow
is at least one order of magnitude greater than the "indirect" power flow for
this situation.

A conparison between equations (17) and (19) demonstrates that the order of
magnitude condition on B:- requires that there be a relationship between the
Green functions which appear in An (m1) and those which appear in Al.” for
example, the condition on 32 requires that to leading order A2 = MM 111.
onsidering only the non-zero terms in 12. Although this condition, or
alternatively the foregoing condition on the power flows, would seen to be
intuitively reasonable [particularly for reverberant systems) it is difficult
to verify this analytically. A study of three subsystems which are connected
in a chain say be used to demonstrate fairliylzreadily that the condition that
the modal coupling coefficients are oh: ). in line with the present
definition of weak coupling. does not guarantee that 12 = hall 1A1.
similarly, Hodges and Hoodhouse [3] have considered the power flow through a
chain of oscillators and have shown that in general m1 = Me"), which does
not meet the present requirements. These aspects have been considered further
in reference (8], where it is shown that the requirecents on the Green
functions are in fact likely to he met for reverberant systems.

Under the assumption of weak coupling a first approximation to the diagonal
Green function Gil which is needed for the calculation of at and bi is

(D

G”(x,y,U) = (llp‘) “pi ¢n(x)¢n(y)/[(w:-uz) + “‘02) (20)

where (an is the n‘th natural frequency and ¢n the n'th normal mode shape of
the uncoupled subsystem. Given equation (20). qi and M nay be evaluated
using equations (7), (8) and (16). and the results substituted into equations
(11), (13] end (14) to yield

E. = 2'l'l/ni n = 1 (21),(22)

n - z 2
UIIi - (2/illhic‘l‘71.91.13j 5 i g u |Gij(x,y.u)| dxdydu (23)

i .
J
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where m is the number of resonant nodes in the frequency hand 0 and equation
(23) relates to the direct coupling loss factors only. Equations (21) and
(22) are in agreement with the standard approach to SEA, while it is shown in
reference [8] that a number of well known results for the coupling loss
factors (including those yielded by boththe wave and nodal approaches to SEA)
may be recovered tron equation (23). Under the appropriate conditions the
continuum analysis of section 2 therefore results in the standard SEA
equations.

4 . CONCLUSIONS

it has been shown that under certain conditions the standard form of the SEA
equations may be deduced using a continuum approach. Particular attention has
been paid to the concept of weak coupling, and it has been shown that this
condition alone does not guarantee the validity of the assunption that
non-direct coupling loss factors can he neglected. This condition is,
however, likely to be valid for weakly coupled reverherant systems [8]. The
equations of section 2 are not restricted to the case of weak coupling and
this analysis may he used as a basis for the development of improved models of
the systEn dynamics for those cases in which the standard SEA approach is not
valid.
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1. INTRODUCTION

A test structure of sections of cylindrical shell connected by bolted. flanged joints has been
constructed, generically typical of aerospace structures. This is being used to explore various
aspects of SEA modelling of vibration levels within the structure for given external excitation. The
aim is to study coupling loss factors between the subsystems by a variety of approaches. These
can include (a) inverse estimates based on measuring mean modal energy in the subsysrems under
conditions of known power injection. either with a system containing many subsystems, or with
one assembled with just two sections; (b) measurements of individual coupled modes of the
system. and then calculation of appropriate averages of these; (c) calculation of modal coupling
strengths or wave transmission coefficients through the flange separating the systems. In each case
one seeks information about the statistical properties of the reverberant field in the entire structure
for given driving, notjust a calculation of the average vibrational energy.

2. THE TEST STRUCTURE

The test structure has been designed to be as versatile as possible while remaining easy to handle in
the laboratory. It embodies features relevant to certain aerospace applications. and also, on a more
abstract level. some features likely to misc difficulties with SEA modelling. ldealised SEA smdies
in the past have often used rather simple structures in which these difficulties do not arise. and this
might give a misleading impression about the methodology and expected accuracy of SEA
modelling of more general systems.

The system consists of five sections made from aluminium plate 1.6mm thick. bent to cylindrical
form with radius 0.25m and welded with a single axial seam. The lengths of all the sections are
different. ranging from 0.545m to 0.845m. There is also one section made of plate 2.5mm thick.
with length matching that of one of the thinner sections. All are drilled with 12 equally spaced
holes near the ends. so that bolted connections to simple L-section flanges can be made. These in
tum can be used to bolt sections together, with or without an intervening plane circular baffle made
of 2.5mm aluminium plate. These components can be assembled in a variety of configurations.
with two or more sections, and with or without heavy wooden end-plates.

It is expected that experiments based around this test structure will continue for some time, as
different possibilities are explored. In this paper. we report some preliminary results from early
stages of this investigation. These include both deterministic and statistical results. The
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detemrinistic measurements allow a distinction to be drawn between two different views of the
' vibrational behaviour of this structure. If it were exactly axisymmetric (i.e. if the welded seams
and the discrete bolted joins are not too significant). then all vibration transmission must occur in
one or other of the various waveguide modes having variation with azimuthal angle a like cos use
where the angular order nc can talte the values‘O. l. 2. 3. etc. If the behaviour is separated into
these components. we see a set of one-dimensional propagation problems associated with the
different values of m. 0n the other hand, if we treat each cylindrical section as a single subsystem,
then we obviously have two-dimensional subsystems.

It is not a priori obvious how well SEA will work in such a system. If we use the former View.
then we have many subsystems per section of cylinder. and the modal density in each will be very
'low. If we take the second route we have more modes. but we are “sweeping under the carpet" a
significant aspect of the physics of the problem, namely that the vibration transmission is actually
occurring in a set of weakly-coupled one-dimensional systems over which we are averaging in
some way. This is one of the senses in which this test structure embodies features likely to expose
difficulties in SEA modelling.

Similar difficulties can arise from the fact that the structure has the connectivity of a simple chain:
each section is only connected mechanically with its nearest neighbours. and if the air-bome
pathway for vibration transmission is not significant then the coupling loss factors will be zero
except between neighbouring susbsystems. Also. we expect the nature of the mechanical coupling
to be rather similar across each boundary, since all the joints are nominally identical. Any SEA
model obeying these two conditions predicts a very simple pattern of decay along the system from
excitation at one end. However, very simple observations confirm what one might expect from
other such problems. that the actual decay behaviour is not of this form.

What we see is a large attenutation across the first junction (typically ZOdB with the baffles in
place). and then progressively less across the later o'nes (of the order of 10dB per junction).
Behaviour of this kind is to be expected if there is a significant difference between different modes
or travelling-wave directions in the reflection and transmission coefficients at the boundary. In the
driven section we perhaps excite a broad range of modes to roughly similar energies. as assumed
by standard SEA. Of these, some will be more strongly reflected than others at the first boundary.
so that those which reach the adjacent section will have a much higher proportion of the ones with
high transmission coefficients. Since the next boundary has similar characteristics to the first. the
new mixture of modes is better suited to being transmitted through, and a smaller attenuation is thus
seen. This process repeats. the weaker-transmitting components being filtered out of the mixture
more and more effectively.

Since chain-like systems are not uncommon. it is of value to investigate ways in which SEA might
be used to study them. This can be approached from more than one point of view. We might start
with detailed modelling of the transmission characteristics of the boundary. to seek. for example.
coincidence angles as a physical basis for the filtering phenomenon. We might then be able to
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incorporate this knowledge in a new SEA model. but we would perhaps have defeated the object of
SEA. which is to obtain some kind of predictions of vibrational behaviour without detailed
modelling. Another possibility might be to allow. say, two subsystems per section. made up of
modes/waves with respectively higher and lower transmission coefficients. but without trying to
decide in advance what these should be. We could then, provided enough experimental data were
available. perform a besr-fitting exercise of a model of this kind to the observed pattem of overall
response in the sections. 11’ by those means it proved possible to match the results well. one might
have a model capable of predicting the effects of Structural modification without having to know
very much about the detailed physics underlying the split between the pairs of subsystems.

3. CHECKING THE DISPERSION RELATION

Measurements have been performed to examine the extent to which the modes of the system do
indeed subdivide into different values of he. and also to check the behaviour of our cylindrical
sections against the theoretical dispersion characteristics for a thin cylindrical shell. The structure
was assembled with the dividing plates in place. to minimise coupling between sections for this
first stage of investigation. The analysis method has been described before when investigating
ribbed cylinders [l]. A set of transfer functions is determined to a fixed accelerometer from a ring
of driving points equally spaced around the circumference. By Fourier analysing with respect to
azimuthal angle. we then decompose the signal into the separate contributions from each value of
nc.

This was first done with both observing point and drive points in the same section of the structure.
Since the couplingbetween sections is relatively weak. we then find a well—defined series of peaks
corresponding to modes which "live" predominantly in that section. By looking at a single peak
frequency. we can easily perform a modal analysis of that mode as a Fourier series in no. Almost
always, this series is strongly dominated by a single term. so that a value of nc can be associated
unambiguoust with each mode. The only exceptions are. not surprisingly. when two peaks are
close enough together to have significant modal overlap. Then the two peaks both show a
significant amount of two different rtc values. corresponding to what each mode “would have had"
in the absence of the close proximity of the other.

This process has been carried out for the first 200 or so modes (mostly occurring in near-
degenerate pairs). for frequencies up to about 2kHz. The results can be immediately compared
with theoretical predictions of the dispersion behaviour for an infinitely-extended version of our

_ cylinder. This behaviour is plotted as a series of curves irt Fig. l. for nc ranging from zero to 16.
Superimposed on this are planed symbols corresponding to the modal measurements. different
symbols being used for different deduced values of nc. It is not difficult to assign an approximate
axial wavenumber to each mode. simply by assuming that the ends of the section correspond to
simple hinges. so that the axial variation of the modes consists of one half-wavelength between the
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ends, or two, or three. and so on. (This assumption has been checked by some measurements

using an axial array of driving points.) The result of this process is shown by Fig. l to give very

close agreement between theory and observation. This has been carried out for two different

sections of cylinder with lengths differing by 30%, and worked well in both cases — since there is

an end correction for the effect of the flanges which is not easy to calculate. the longer section

worked slightly more accurately than the shorter one. We conclude that a first approximation to the

modal behaviour of the system is just as one would guess. Each mode is largely confined to one

bay, and we see an orderly sequence of modes associated with each value of ne which agree well

with the predictions of thin-shell theory.

Naturally we did find some admixture of other values of nc in modes nominally labelled with a

given value. For measurements in the driving bay as just described, the typical level of these was

about a factor 4 below the dominant value. This gives a measure of the influence of the departures

from ideal cylindrical symmetry, due to the weld. non-circularity of cross—secrion, non—uniforrrtity

of thickness or material properties. etc.

When similar measurements are performed with driving and observing points in two adjacent

sections. a rather different result is found. Since each mode is quite strongly confined to a single

section. we find a high attenuation of general level in the adjacent bay. Numbers of the order of

20dB are typical of this attenuation. Performing the decomposition into rtt values again. we find

that the level of predominance of the nominal value of he is so much redqu that it is often hard to

tell which value this is without data from the driven bay. This phenomenon can be explained. at

least qualitatively. in terms of modes available in the second section which might couple to a given

mode confined mainly to the first section. Since the lengths of the sections are different, there is

usually not a mode with the same value of rtc available for coupling. instead. there may be modes

with other I'lc values much closer in frequency. and the combined effect of coupling to these

produces a mixture of nc values much less strongly dominated by a single value. Notice that this

explanation does not involve any further sources of non-cylindricality — it arises simply from the

solution to a mode-coupling problem.

4. COUPLING LOSS FACTORS

Attempts have also been made to measure in sin: coupling loss factors by statistical methods. First.

a system was assembled consisting of just two sections. separated by the circular plate. Each

section was then subdivided by eight equally-spaced circumferential rings. and a random position

chosen on each ring. This gave a set of sixteen points covering both sections. regularly in one

direction and randomly in the other. A full matrix of transfer function between these points was

then measured. using impulsive excitation and small accelerometers to receive. A hammer tip was

selected which gave reliable data up to at least 6kHz (although with plating this thin. the hammer

rebound time and hence the frequency spectrum of forcing was more dependent on the cylinder

590 Proc.l.O.A. Vol 12 Pan 1 (1990)  ,, —J



 

Proceedlngs of the Institute of Acoustics

EXPLORING STATISTICAL ENERGY ANALYSIS ON A CYLINDRICAL STRUCTURE

dynamics than on the hammer tip). All data were collected by digital datalogger, so that a wide
range of subsequent processing could then be carried out.

From the driving point measurements (i.e. the diagonal terms of matrix of measurements), we can
deduce power input, and also check modal density. We already have a good idea of the modal
density. of course. from the results of the previous section. Each row of the matrix is then
normalised and averages performed over the two secdons separately to deduce the SEA matrix of
mean energy per mode in the two subsystems when one or the other is subject to driving with a
known rate of power injection. The averaging can be done in such a way that what is simulated is
independent random drive at the eight excitation points in a section. This should be enough to give
a reasonable average over the mode shape factors, achieving something approaching ideal “rain on
the roof" driving. The extent to which this hope was realised in practice can also be assessed from
the data. by looking at variances as well as average values.

By inverting the SEA matrix thus obtained, estimates of damping loss factors and coupling loss
factors are obtained. This can either be done over a wide range of frequency. or in separate
frequency bands. The damping loss factors can be compared with direct measurements of
damping. Since we have weakly coupled subsystems here, the matrix is strongly diagonal-
dominant and the inversion process is numerically well-conditioned. The coupling loss factor we
expect to detemrine this way is, of course, the one corresponding to the rapid initial attenuation. as
discussed earlier. When these two sections are later incorporated into a larger structure. we will
expect to obtain different results for the coupling of these two bays depending on exactly how the
data are interprered.

. As an initial calculation, the average behaviour over a wide frequency range was obtained, using the
directly logged forces and acceleran'ons (integrated to give velocities) with minimal processing. The
equivalent power inputs and subsystem energies were then calculated, in response to uncorrelated
random forcing at the set of points in one subsystem or the other with a frequency power spectrum
matching that of the hammer blows. Values averaged over the whole matrix'of transfer functions
(with the expected error in the estimates) are given below. for forcing having an rtns value of 1N:

Power in to subsystem l 2.7x10'3 watts (i995)
Power in to subsystem 2 2.7x10'3 watts (19%)

<v2>n 1.3x10" mZ/s2 (19%)
<v1>12 2.3x10"s mZ/s2 ($7.570)
<v1>n 2.5x10“ m2/sz ($7.592)
<v2>21 1.1x10“ ml/s2 (114%)

The corresponding damping loss factors TI]. 11; and the coupling loss factors 11” and n2, for the
two sections are given by the formal relations

mm = 3.5 (120%) mm; = 0.074 ($4095)
(1)11“ = 0.11 (140%) on]; = 5.9 (120%)
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where we might take the "centre frequency" to be SOOHz. giving to = 3140rads/s.

The usual SEA reciprocal relation nmn = nz'nn (n; being the number of modes in each section

over the bandwidth) is satisfied to within 5%. This follows alm05t automatically from the way the
experiment was performed and the data were analysed: we had a full matrix of measurements, each

individually paired with a reciprocal one. and for impulsive forcing with such a short

autocorrelation function (and consequently wide spectrum) the boundaries of the subsystems are

not “felt” by the forcing so that power input is govemod by the infinite cylinder admittance.
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Figure l. Computed dispersion curves for an infinite thin cylinder with the same parameters as the
cylindrical sections of the apparatus used here (plotted as solid lines) compared with measurements
of individual modes (plotted as symbols). Both theory and measurements discriminate between
different angular orders, indicated by values of the variable rtc
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