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1. INTRODUCTION

The problem of predicting the response of a complex system to high frequency
random loading may be approached using Statistical Energy Analysis (SEA} which
seeks to relate the rwean energy stored in different parts of the system to the
distribution of input power [1]. To this end the system is modelled as a
collection of subsystems vwhose mean energies and external power inputs are
related via a set of linear equations, the coefficients of which are expressed
in terms of quantities known as the loss factors and the coupling loss
factors. Comprehensive reviews of SEA are given in references [2] and [3]
where the historical background of the method and the physical principles
involved are discussed in detail, For a complex dynamic system the
theoretical justification of the SEA equations is normally based on either a
diffuse wave field approach or a modal approach to the system dynamics. In the
latter case the arguments are generally based on a heuristic extension of the
exact results which may be derived for the power flov between tvo coupled
oscillators or, more generally, the approzimate results which may be derived
for two coupled oscillator sets. A number of studies (for example, references
[3-5]1) have considered the theoretical background to SEA in detail, and
considerable progress has been made in identifying the conditions under which
the method is likely to yield reliable results. The aim of the present
analysis is to complement existing approaches with a derivation of the SER
equations which is based on a continuum analysis of a general coupled dynamic
system. It is shown that the general form of the SEA equations is widely
applicable providing a suitable energy definition is adopted, and expressions
for the coupling loss factors are derived in terms of the Green functions of
the system., The conditions under which the continuum results reduce to the
standard SER theory are discussed, and particular attention is paid to the
role of "non-direct" coupling loss factors.

2. DERIVATION OF THE SEM EQUATIONS
The present analysis is concerned with the vibration of a general system which
is composed of N coupled subsystems. The j'th subsystem is taken to have a
single scalar response variable uj(x,t} which for harmonic vibration of
frequency @ is governed by the equation of motien
] . & "
- - L)+ . 1
Lj(uj) P (1 nj]uJ = Pj(x ) FJ(x w} (1)

where uj{x,w) is the complex amplitude of the response, Lj is a differential
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operator, @} is the volume density {or equivalent) and ¥{ is a dissipation
factor. The distributed force Fi(X,w) represents an external load, vhile the
force F3(x,uw) represents a load arising from coupling te another subsystem.
The latter force will generally appear only if subsystenm j forms the boundary
of another subsystem; for example a plate torming one boundary of an airspace.
¥ith the present approach a structural member consisting of a beam (with
coincident mass centre and shear centre) would be modelled as four subsystems
with response variables corresponding to twist, axial displacement, and
lateral displacement in two perpendicular directions. Similarly the bending
vibratiens of a plate would be modelled as a single subsystem vith ujix,t)
equal to the out of plane displacement, while ap airspace would be modelled as
a single subsystem with uj(x,t) equal to the dynamic pressure. For structural
elements whose various displacement components are governed by coupled
differential equations f{as for example in the case of a shell) the following
analysis must be modified slightly. as detailed in reference [6), although the
final results are not significantly effected.

If equation (1) is =multiplied by the complex conjugate of the response
velocity (~iwuj) and integrated over the subsystem volume (or equivalent),
then the real part of the resulting equation yields the following power flow
relationship

9, = Ut * R (2}

where Q) is the time average of the input pewer, Tj is the time average of the
total kinetic energy stored in the subsystem, and Rj is the time average of
the power which is transferred to the neighbouring subsystems. If - the -
coupling between the subsystems is conservative then the sum of Rj over j will
be zers. Equation (2) is equally valid for the case of random excitation
providing the notion of a temporal average is replaced with that of a
statistical average, and the frequency band of interest is relatively narrow
so that the frequepncy which appears on the teft side of the equation may
reasonably be replaced by a centre frequency {or alternatively, the
dissipation factor is inversely proportionzl to frequency}. Statistical
Energy Analysis postulates that Rj is proportional to the energy difference
between neighbouring subsystems; the validity of this prenmise is investigated
in what follows.

The response of the coupled system to the harmonic loading Fji(x,w} which
appears in equation (1) may be written formally as

u (x,w =3 [ 6 (xy 0F (ywldy (N
! R .

vhere Vj is the volume {or equivalent} cccupied by subsystem j and Gijix,y.w)
is a Green function representing the response at location X on subsystem i to
a barponic point load situated at location y on subsystem j. Reciprocity
implies that the Green functions which appear in equation (3) are symmetric.
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In SEA it is frequently assumed that the applied 1loading consists of
uncorrelated ("rain on the roeof") excitation such that ‘the cross-spectrun’
between Fi{y,t) and Fe(z,t) has the form

Slkty,z,m) = ijéty-z)ai {4)

where ai represents the intensity of the excitation acting on subsystem i,
which is assumed to be constant over a frequency band of interest Q. It may
be shown [6] that equations (3} and (4) lead to the results

T = [p]¥a ; @ = [qla (5),{6)

vhere T, Q, and a are vectors containing Ti, Qi, and ai. respectively, the
diagonal matrix [p] contains the densities pi, and M and [q] are given by

LIRFEEN

2 2 (1)
vivjn w |ij(x.y.w)| dxdydw

q, = Re{ Ir imGlitz,x,m]dxdm} (8)
va

Equations {5) and {6) may be used to derive a relationship between the input
power and the subsystem energies in the form

Q=CE;c= (1/n(qIN '[q) : B =nlp g "IT (91-(11}

vhere the new subsystem energy measure Ei has been introduced. This measure
is similar te that introduced by Smith [7] in the study of strongly coupled
systems. Equation (2) and the summation property of the power flows Rj may be
used to show that equation (9) can be rewritten in the form

0, = ucnln‘Ei + jEi ucn!jnl(E‘-EJ) (12)

_ _ _ -1
1n, = (err}'{ipiqII wcq”ni = (1!ﬂ)}l”qiqJ (13}, (14)

where we is the centre frequency of the excitation and the coefficients nini
and nijnt are defined by equations (13) and {14). Equation (12) is precisely
the standard form of the SER equations although the relationship between the
coefficients defined by equations {13) and {(14) and the familiar loss factors
and coupling loss factors of SEA is not immediately zpparent., Similarly the
energy definition of equation (11} generally differs from the modal energy
definition which is normally used in SEA. It is showa in the following
section that under certain conditions the standard SEAR parameters zay be
recovered from equatiens (11}, (13), and (14).

Proc.l.0.A. Vol 12 Pant 1 (1990}




Proceedings of the Institute of Acoustics

DERIVATION OF THE SER EQUATIONS.

Aithough the present analysis has focussed on "rain on the roof" excitation,
it is shown in reference [6] that equations {(11)-(14) are equally valid for
the case of random point loading providing the power inputs and subsystem
energies are averaged over the range of possible point load locations. Also,
randon system properties may be incorporated into the above analysis by
averaging the various matrices (and therefore effectively the Green functions)
over the statistical distribution cf the system properties.

3. WEAK COUPLING APPROXIMATIONS

The concept of weak coupling plays a central role in SER, although there is no
sirgle agreed definiticn of weak coupling [2). 1In the present analysis the
coupling will be said to be weak if

[Glj(x.y,u)la = 0{e") (15)

vwhere € is a small parameter and n represents the least number of couplings
which lie between subsystem i and subsystem j. Thus n=1 if the subsystems are
directly coupled, and n=2 if the shortest route between the tvo subsystens is
across ona intervening subsystem." There are two main classes of system which
can be expected to meet the requirements of equation (15), being (i} those
systezs which have a high wave decay rate such that the reduction in the
energy of a wave which crosses a subsystem is 0{1-£), and (ii) those systems
whose couplings have a wave transmission coefficient which is O(e). It can be
noted that various plate junctions tend to have a low wave transmission
coefficient [1] even though the mechanical coupling at such junctions is
strong. From a modal, rather than a wave, point of view it can be shown that
the present weak coupling condition will be met if the generalized coupling
coefticiﬁﬂ§s between the modal coordinates of the connected subsystems are of
order € . The present definition of weak coupling therefore encompasses
=ost previous definitions [2] without limiting the analysis to either a wave
or a modal approach.

Equation (14) indicates that the coupling loss factors miy are dependent on
the inverse of the matrix M which is defined by equation (7). This matrix nay
generally be written in the form

M= [A] + A+ Az * R (16)

where [A] represents the diagonals of ¥ and each off-diagonal entry of M is
contained in opne of the matrices Ai. If the minimum nucber of couplings which
separate subsystem i from subsystem j is n, then Mij is assigned to the matrix
An. Thus the ij'th entry of A1 will bde zero unless subsystems i and J are
directly coupled. The term n which appears in equation (16} represents the
maxigur "width" of the system. If the weak coupling condition of equation
(15} is met then [A] will be 0(1) while An will be 0(e"). The inverse of M
ray then be written approximately in the form
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which may then be used together with equaticn (14) to calculate the couplizg
loss factors. It can be seen from equations {9), (10}, {(12) and {17) that the
present definition of weak coupling implies that the coupling loss factors
will be of a lower order of magnitude than the loss factors, a condition which
has formed the basis of a nuzber of previous definitions of weak coupling [2).

In SEA it is normally assumed that the coupling loss factor mij is zero unless
subsystems i and j are directly coupled. In the present apprecach this is
equivalent to retaining only the first two terms on the right of equaticn
{17), which pay initially seem to be justified con the grounds that the
remaining terms are of second and higher order. However, a Statistical Energy
Analysis ncrmally censists of (i} calgulating the loss factors and coupling
loss factors, and {ii) inverting the ¢oupling loss factor zatrix to yield the
subsysten energies for a given distribution of input power. Step {ii) is
equivalent to using the loss factors and coupling loss factors to estizate the
zatrixz M, since equations (9} azd (10} imply that

E = nlg 'I1%lq'1Q {18)

In practical situations only one of the subsystems may be subjected to
excitation, in which case the second and higher order terms which zppear in M
are vitally important as in their absence equation ({18} would predict a
non-zero response only in those subsystems which are directly coupled to the
excited subsystem. The second and higher order terms which appear in equation
(17) may not therefore be lightly discarded if the calculated coupling loss
factors are to yield an estimate of M which is accurate beyond first order.
To assess the conditions under which "non-direct” coupling less factars zay
reasonably be neglected it is convenient to write the inverse of ¥ in the forrm

-1 _ . N "
M '[°]+31+Bz+ ...... B (19}

vhere, as in equation (16), the ij'th entry of Bn is zero unless the minizuc
distance between subsystems i and j is across n couplings. The matrix B
therefore accounts for the direct coupling loss factors, while the non-direct
© ¢oupling loss factors are contained in the subsequent matrices. Equaticn (17)
implies that [&] is 0(1) while B1 is 0{e). By inverting equation (1%} and
making use of the structure of the Bn patrices it may be shown that the
leading order terms of each of the An matrices which appear in eqyation (16}
may be expressed solely in terms of B1 providing that Bn ¢ 0(e) for m>l.
Under this condition the inclusicn of the first two terms in either equation
{17} or equation (18) is sufficient to yield a reliable estizate of the system
response.

The condition Bn ¢ 0(e”) for n7l may be re-expressed in terms of the coupling
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loss factors as nij ¢ 0(e") for n>1, where n is the ninimum nucber of
couplings which lie between subszystems i and j. The physical significance of
this requirement may be inferred by corsidering the situation in which only
subsystem j is subjected to excitation. This will produce a response in
subsystem j of 0{1) and a response in subsystem i of O(e"). The response of
the subsystem immediately preceding i on the shortest path between i and j
will be 0(e"" '}, Given that the coupling loss facter is 0{e) for directly
coupled subsystems, equation (6} predicts that the power flow into §§§systeg i
which is directly attributable to its nearest neighbour is 0{e}x0(e” '}=0{e')}.
Further, the indirect contribution to the pover flow into subsystem i due te
the enzrgy conteat of subsystem j will be 0{ni;} x 0(1). The requirement that
nij ¢ 0{€’) is therefore equivalent to requiring that the "direct" powver flow
is at least one order of magnitude greater than the "indirect" power flow for
this situation.

A comparison between equations (17) and {19) Qemonstrates that the order of
tagnitude condition on Bn requires that there be a relationship between the
Green functions which appear in An (n>1) and those which appear in A121 For
example, the condition on Bz requires that to leading order Az = Ai1[A™ 'JAs,

¢nsidering only the non-zero terms in R2. Although this c¢ondition, or
alternatively the foregoing cordition on the power flows, would seem to be
intuitively reasopnable (particularly for reverberant systems) it is difficult
to verify this analytically. A study of three subsystems which are connected
in a chain ray be used to demonstrate £air%g2readily that the conditien that
the wmodal coupling coefficients are O0{e "), im line with the prqsent
definition of weak coupling, does not guarantee that Az = A1[A7 141,
Similarly, Hodges and Woodhouse [3} have considered the power flow through a
chain of oscillators and have shown that in general nij = 0(e™), which does
not meet the present regquirezents. These aspects have been considered further
in reference [8], where it is shown that the requirements on the Green
functions are in fact likely to be met for reverberant systems.

Under the assunption of weak coupling a first approximation to the diagonal
Green functicn Gis which is needed for the caleculation of qi and i is
@

= 2z 2 . 2
6, (xyw = (lVp) E ¢ (x)& (y)/[(w-u") + iy e {20}
¥here wn is the n'th natural frequency and ¢n the n'th normal mode shape of
the uncoupled subsystem. Given equation (20}, gqi and Xi may be evaluzted
using equatioms (7}, (8) apnd (16), and the results substituted into equations
(11}, (13) 2nd (14) to yield

Ei = ZTIIni n, =71, (21}, (22)

- 2(. 2
n, B, = {2{n]ucrkyjpipj £ £ é W |Gij{:,y,u)1 dxdydw {23)
iy
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where ni is the number of resonant zodes in the frequency band @ and equaticy
{23) relates to the direct coupling loss factors only. Equations (21) and
(22} are in agreement with the standard approach to SEA, while it is shown in
reference [8] that a number of well known results for the coupling loss
factors (including those yielded by both the wave and podal approaches te SEA)
may be recovered from equation (23)}. Under the apprerriate conditions the
continuum analysis of section 2 therefore results ip the standard SEA
equations.

4. COUCLUSIONS

It has been shcwn that under certain conditions the stapdard form of the FA
equations may be deduced using a continuum approach. Particular attentien has
been paid to the concept of weak coupling, and it has Yeen shewn that this
condition =alone does not guarantee the validity of the assuzption that
non-direct coupling less facters can be neglected. This cendition is,
however, likely to be valid for weakly coupled reverberant systeps [8]. The
equations of section 2 are not restricted to the case of weak couplirng and
this analysis may be used as a basis for the development of improved models of
the system dynamiecs for these ceses in which the standzrd SEA zprrcach Is not
valid.,
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1. INTRODUCTION

A test structure of sections of cylindrical shell connected by bolted, flanged joints has been
constructed, generically typical of acrospace structures. This is being used to explore various
aspects of SEA modelling of vibration levels within the structure for given external excitation. The
aim is to study coupling loss factors between the subsystems by a variety of approaches. These
can include (a) inverse estimates based on measuring mean modal energy in the subsystems under
conditions of known power injection, either with a system containing many subsystems, or with
one assembled with just two sections; (b) measurements of individual coupled modes of the
system, and then calculation of appropriate averages of these; (c) calculation of modal coupling
strengths or wave transmission coefficients through the flange separatin g the systems. In each case
one secks information about the statistical properties of the reverberant field in the entire structure
for given driving, not just a calculation of the average vibrational energy.

2. THE TEST STRUCTURE

The test structure has been designed to be as versatile as possible while remaining easy (o handle in
the laboratory. It embodies features relevant to certain aerospace applications, and also, on a more
abstract level, some features likely to raise difficulties with SEA modelling, Idealised SEA studies
in the past have often used rather simple structures in which these difficulties do not arise, and this
might give a misleading impression about the methodology and expected accuracy of SEA
modelling of more general systems.

The system consists of five sections made from aluminium plate 1.6mm thick, bent to cylindrical
form with radius 0.25m and welded with a single axial seam. The lengths of all the sections are
different, ranging from 0.545m to 0.845m. There is also one section made of plate 2.5mm thick,
with length matching that of one of the thinner sections. All are drilled with 12 equally spaced
holes near the ends, so that bolted connections o simple L-section flanges can be made. These in
tum can be used to bolt sections together, with or without an intervening plane circular baffie made
of 2.5mm aluminium plate. These components can be assembled in a variety of configurations,
with two or more sections, and with or without heavy wooden end-plates.

It is expected that experiments based around this test structure will continue for some time, as
different possibilities are explored. In this paper, we report some preliminary results from early
stages of this investigation. These include both deterministic and statistical results. The

Proc..O.A, Vol 12 Part 1 (1990) 567




Proceedings of the Institute of Acoustics

EXPLORING STATISTICAL ENERGY ANALYSIS ON A CYLINDRICAL STRUCTURE

deterministic measurements allow a distinction to be drawn between two different views of the

" vibrational behaviour of this seucture, If it were exactly axisymmerric (i.e. if the welded seams
and the discrete bolted joins are not too significant), then all vibration transmission must occur in
one or other of the various waveguide modes having variation with azimuthal angle @ like cos n 8
where the angular order n, can take the values0, 1,2, 3, etc. If the behaviour is separated into
these components, we see a set of one-dimensional propagation problems associated with the
different values of n.. On the other hand, if we treat each cylindrical section as a single subsystem,
then we obviously have rwo-dimensional subsystems,

It is not a priori obvious how well SEA will work in such a system. If we use the former view,
then we have many subsystems per section of cylinder, and the modal density in each will be very
‘low. If we take the second route we have more modes, but we are “sweeping under the carpet” a
significant aspect of the physics of the problem, namely that the vibration transmission is actually
occurring in a set of weakly-coupled one-dimensional systems over which we are averaging in
some way. This is one of the senses in which this test structure embodies features likely to expose
difficulties in SEA modelling. '

Similar difficulties can arise from the fact that the structure has the connectivity of a simple chain:
each section is only connected mechanically with its nearest neighbours, and if the air-bome
pathway for vibration transmission is not significant then the coupling loss factors will be zero
except berween neighbouring susbsystems. Also, we expect the nature of the mechanical coupling
to be rather similar across each boundary, since all the joints are nominally identical. Any SEA
model obeying these two conditions predicts a very simple pattern of decay along the system from
excitation at one end. However, very simple observations confirm what one might expect from
other such problems, thar the actual decay behaviour is not of this form.

What we see is a large attenutation across the first junction (typically 20dB with the baffles in
place), and then progressively less across the later ones (of the order of 10dB per junction).
Behaviour of this kind is to be expected if there is a significant difference between different modes
or travelling-wave directions in the reflection and transmission coefficients at the boundary. In the
driven section we perhaps excite a broad range of modes to roughly similar energies, as assumed
by standard SEA. Of these, some will be more strongly reflectéd than others at the first boundary,
so that those which reach the adjacent section will have a much higher proportion of the ones with
high transmission coefficients. Since the next boundary has similar characteristics to the first, the
new mixture of modes is better suited 1o being transmitted through, and a smaller anenuation is thus
seen. This process repeats, the weaker-transmitting components being filiered out of the mixture
mere and more effectively.

Since chain-like systems are not uncommon, it is of value 1o investigate ways in which SEA might
be used 10 study them. This can be approached from more than one point of view. We might start
with detailed modelling of the transmission characteristics of the boundary, to seek, for example,
coincidence angles as a physical basis for the filtering phenomenon. We might then be able to
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incorporate this knowledge in a new SEA model, but we would perhaps have defeated the object of
SEA, which is to obtain some kind of predictions of vibrational behaviour without detailed
modelling. Another possibility might be to allow, say, two subsystems per section, made up of
modes/waves with respectively higher and lower transmission coefficients, but withour wying to
decide in advance what these should be. We could then, provided enough experimental data were
available, perform a best-fitting exercise of 2 model of this kind to the observed pattern of overall
response in the sections. If by those means it proved possible to match the results well, one might
have a model capable of predicting the effects of stuctural modification without having to know
very much about the detailed physics underlying the split between the pairs of subsystems.

3. CHECKING THE DISPERSION RELATION

Measurements have been performed to examine the extent to which the modes of the system do
indeed subdivide into different values of n, and also to check the behaviour of our cylindrical
sections against the theoretical dispersion characteristics for a thin cylindrical shell. The structure
was assembled with the dividing plates in place, to minimise coupling between sections for this
first stage of investigation. The analysis method has been described before when investigating
ribbed cylinders [1). A set of transfer functions is determined 1o a fixed accelerometer from a ring
of driving points equally spaced around the circumference. By Fourier analysing with respect to
azimuthal angle, we then decompose the signal into the separate contributions from each value of
..

This was first done with both observing point and drive points in the same section of the structure.
Since the coupling between sections is relatively weak, we then find a well-defined series of peaks
corresponding to modes which “live” predominantly in that section. By looking at a single peak
frequency, we can easily perform a modal analysis of that mode as a Fourier series in n,. Almost
always, this series is strongly dominated by a single term, so that a value of n_ can be associated
unzmbiguously with each mode. The only exceptions are, not surprisingly, when two peaks aré
close enough together to have significant modal overlap, Then the two peaks both show a
significant amount of two different n_ values, corresponding to what each mode “would have had”

in the absence of the close proximity of the other.

This process has been carried out for the first 200 or 50 modes (mostly occurring in near-
degencrate pairs), for frequencies up to about 2kHz. The results can be immediately compared
with theoretical predictions of the dispersion behaviour for an infinitely-extended version of our
. ¢ylinder. This behaviour is plotted as a series of curves in Fig. 1, for n, ranging from zero to 16.
Superimposed on this are plotted symbols corresponding to the modal measurements, different
symbols being used for different deduced values of n_. It is not difficult to assign an approximate
axial wavenumber to each mode, simply by assurning that the ends of the section correspond to
simple hinges, so that the axial variation of the modes consists of one half-wavelength berween the
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ends, or two, or three, and 50 on. (This assumption has been checked by some measurements
using an axial array of driving points.) The result of this process is shown by Fig. 1 to give very
close agreement between theory and observation. This has been carried out for two different
sections of cylinder with lengths differing by 30%, and worked well in both cases — since there is
an end correction for the effect of the flanges which is not easy to calculate, the longer section
worked slightly more accurately than the shorter one. We conclude that a first approximation to the
modal behaviour of the system is just as one would guess. Each mode is largely confined to one
bay, and we see an orderly sequence of modes associated with each value of n; which agree well

with the predictions of thin-shell theory.

Naturally we did find some admixture of other values of n, in modes nominally labelled with a
given value. For measurements in the driving bay as just described, the typical level of these was
about a factor 4 below the dominant value. This gives a measure of the influence of the departures
from ideal cylindrical symmetry, due to the weld, non-circularity of cross-section, non-uniformity
of thickness or material properties, elc.

When similar measurements are performed with driving and observing points in two adjacent
sections, a rather different result is found, Since each mode is quite sirongly confined to a single
section, we find 2 high atienuation of general level in the adjacent bay. Numbers of the order of
20dB are typical of this attenvation. Performing the decomposition into n, values again, we find
that the level of predominance of the nominal value of n, is so much reduced that it is often hard to
tell which value this is without data from the driven bay., This phenomenon can be explained, at
least quakitatively, in terms of modes available in the second section which might couple to a given
mode confined mainly to the first section. Since the lengths of the sections are different, there is
usually not a mode with the same value of n, available for coupling. Instead, there may be modes
with other n. values much closer in frequency, and the combined effect of coupling to these
produces a mixture of n,, values much less strongly dominated by a single value. Notice that this
explanation does not involve any further sources of non-cylindricality — it arises simply from the
solution to a mode-coupling problem.

4. COUFLING LOSS FACTORS

Auempts have also been made to measure in sifu coupling }oss factors by statistical methods. First,
a system was assembled consisting of just two sections, separated by the circular plate. Each
section was then subdivided by eight equally-spaced circumferential rings, and a random position
chosen on each ring. This gave a set of sixteen points covering both sections, regularly in one
direction and randomly in the other. A full matrix of transfer function between these points was
then measured, using impulsive excitation and small accelerometers to receive, A hammer tip was
selected which gave reliable data up to a1 least 6kHz (although with plating this thin, the hammer
rebound time and hence the frequency spectrum of forcing was more dependent on the cylinder

590 Proc..0.A. Vol 12 Part 1 (1990)




Proceedings of the Institute of Acoustics

EXPLORING STATISTICAL ENERGY ANALYSIS ON A CYLINDRICAL STRUCTURE

dynamics than on the hammer tip). All data were collected by digital datalogger, so that a wide
range of subsequent processing could then be carried out.

From the driving point measurements (j.e. the diagonal terms of matrix of measurements), we can
deduce power input, and also check modal density. We already have a good idea of the modal
density, of course, from the results of the previous section. Each row of the matrix is then
normalised and averages performed over the two sections separaiely to deduce the SEA matrix of
mean ¢nergy per mode in the two subsystems when one or the other is subject to driving with a
known rate of power injection. The averaging can be done in such a way that what is simulated is
independent random drive at the eight excitation points in a section. This should be enough to give
a reasonable average over the mode shape factors, achieving something approaching ideal “rain on
the roof” driving. The extent to which this hope was realised in practice can also be assessed from
the data, by looking at variances as well as average values.

By inverting the SEA matrix thus obtained, estimates of damping loss factors and coupling loss
factors are obtained. This can either be done over a wide range of frequency, or in separate
frequency bands. The damping loss factors can be compared with direct measurements of
damping. Since we have weakly coupled subsystemns here, the mawix is strongly diagonal-
dominant and the inversion process is numerically well-conditioned. The coupling loss factor we
expect to determine this way is, of course, the one corresponding 1o the rapid initia} attenuation, as
discussed earlier. When these two sections are later incorporated into a larger structure, we will
expect to obtain different results for the coupling of these two bays depending on exactly how the
data are interpreted.

. As an initial calculation, the average behaviour over a wide frequency range was obtained, using the
directly logged forces and accelerations (integrated to give velocities) with minimal processing. The
equivalent power inputs and subsystem energies were then caiculated, in response to uncorrelated
random forcing at the set of points in one subsystem or the other with a frequency power spectrum
maiching that of the hammer blows. Values averaged over the whole matrix of transfer functions
(with the expected error in the estimates) are given below, for forcing having an rms value of IN:

Power in 10 subsystern 1 2.7%10°3 wans 9%)
Powerin to subsystem 2 2.7x10°? watts (£9%)
<v>) 1.3x10% mYs? (19%)
<v2>12 2.3x10°% m¥s? (+7.5%)
<viy  2.5x107 m¥s? (+7.5%)
<vByy  L1x10% mYs? (£14%)
The corresponding damping loss factors 1;, T, and the coupling loss factors 1,4 and 1y, for the
two sections are given by the formal relations
wny = 3.5 (#20%) on,, = 0.074 (+40%)
Ny = 0.11 (40%)  wm, = 5.9 +20%)
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where we might take the "cer)u'é frequency” to be 500Hz, giving @ = 3140rads/s.

The usual SEA reciprocal relation ny7;3 = N3ty (n; being the number of modes in each section
over the bandwidth) is satisfied to within 5%. This follows almost automatically from the way the
experiment was performed and the data were analysed: we had a full matrix of measurements, each
individually paired with a reciprocal one, and for impulsive forcing with such a short
autocorrelation function (and consequently wide spectrum) the boundaries of the subsystems are
not “felt" by the forcing so that power input is governed by the infinite cylinder admittance.
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Figure 1. Computed dispersion curves for an infinite thin cylinder with the same parameters as the
cylindrical sections of the apparatus used here (plotted as solid lines) compared with measurements
of individual modes (plotted as symbols). Both theory and measurements discriminate between
different angular orders, indicated by values of the variable n,
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