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In many industrial situations the vibro-acoustic response of an engineering system is sensitive to 

manufacturing imperfections. Such imperfections are uncertain, or random, and this implies that 

any given system is necessarily drawn from an ensemble of possible systems.  In some cases this 

is a "real" ensemble, as in the case of a collection of motor vehicles produced on a production 

line.  In other cases the ensemble may be "virtual" in the sense that only one system is actually 

manufactured (for example, a satellite), although the properties of that one system can be consid-

ered to be drawn from a hypothetical ensemble of possibilities. In all cases the effect of the un-

certainty should be considered in assessing the performance of the system: it is not sufficient for 

a nominally perfect system to meet the design requirements.  Rather, there should be an acceptably 

low probability that the random system will not meet the design requirements.   Any assessment 

of the random response of the system clearly requires knowledge of the statistics of the response, 

and in vibro-acoustics this normally involves a consideration of the statistics of a frequency re-

sponse function (FRF).  It initially appears to be a very challenging task to predict the statistical 

properties of FRFs, particularly when the underlying system uncertainties may be ill-defined or 

unknown.  However, it is shown here that under broad conditions a universal behaviour arises, 

and random FRFs have very remarkable properties.  The key result is that the average value of 

any function of an FRF is equal to the function evaluated at the average value of the FRF.  This 

is known as the AE property in nuclear physics, and it is shown here that the result also applies 

in vibro-acoustics and has enormous utility in response prediction. 

 Keywords: vibro-acoustics, random systems. 

 

1. Introduction 

The vibration response of an engineering system can be extremely sensitive to manufacturing var-

iability, to the extent that the frequency response functions (FRFs) of the system can be considered 

to be random over an ensemble of manufactured items.  Ideally the statistical properties of the FRFs 

should be calculated at the design stage to ensure that the reliability and performance of the system 

will meet the required targets.  In general, the statistics of the FRFs will depend on the statistical 

distribution of the manufacturing uncertainties, and it can be an extremely difficult task to (i) statis-

tically quantify the manufacturing uncertainties, and (ii) propagate these uncertainties through a com-

putational model of the system to yield the response statistics.  However, if the system is sufficiently 

random then a number of “universal” statistical laws may be applicable, making it possible to avoid 

much of the difficulty involved in (i) and (ii).   For example, it is known that the higher natural 

frequencies and mode shapes of a random system often conform to the statistics of the Gaussian 

Orthogonal Ensemble (GOE) [1,2], and this fact can be used in conjunction with energy flow models 

(in particular, Statistical Energy Analysis [3]) to yield the mean and variance of the vibrational ener-

gies of the various system components [4].   The concern of the present paper is not with the system 

energy distribution, but rather with the statistical properties of the complex FRFs, and in particular, 

the aim is to explore possible universal properties of these functions.  Previous work in this area 
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includes that of Lyon regarding the variance of the modulus of a FRF [5] and the statistics of the 

phase of a FRF [6], and Skudrzyk [7] and Cremer and Heckl [8] regarding the mean value of a com-

plex FRF.  As explained below, these investigations are extended here by considering the potential 

applicability of a powerful statistical property of a FRF known as the analyticity-ergodic requirement. 

A fundamental statistical property of a random FRF is the average value, and the average consid-

ered might be either a frequency average or an ensemble average.  A frequency average can be taken 

over a rectangular frequency window, or for mathematical convenience a more complex window such 

as the Lorentzian weighting function can be used [9].  The Lorentzian weighting function, yielding 

the Lorentzian average, has the same shape as the Cauchy distribution [10] and is a bell-shaped curve 

with specified centre frequency and half-power bandwidth; the function has a single pole in the lower 

complex half-plane (and also a single pole in the upper half-plane), and because of this the Lorentzian 

average has remarkable properties when applied to a causal FRF (i.e. a function that is analytic in the 

lower half-plane).  If the symbol x< >  is used to represent the Lorentzian average of x, then under 

loose restrictions it is found that ( ) ( )f H f H< >= < >   for a function  f  of a causal FRF H [9].  In 

considering a random FRF in an engineering context, the ensemble statistics of the function are of 

more concern than Lorentzian frequency averages taken on a single realization, and it is therefore of 

significant interest to consider whether the ensemble average will have the same properties as the 

frequency average.   This issue has been addressed in nuclear physics literature in the context of 

random scattering matrices: it is generally assumed  that H is an ergodic random function [11], so 

that the frequency and ensemble averages are equal (for a sufficiently wide frequency averaging win-

dow) meaning that the ensemble average has exactly the same properties as the Lorentzian average 

[9].  The condition ( ) ( )f H f H< >= < > , when applied to ensemble averages, is known as the ana-

lyticity-ergodicity (AE) requirement, and Mello et. al. [9] have used this requirement in conjunction 

with the principle of maximum entropy to yield the probability density function of a scattering matrix. 

More generally, the literature on random scattering matrices, with potential application to vibrational 

FRFs, is very extensive: references [12-14] are examples of review papers, and a very recent contri-

bution [15] has derived exact results for the probability density function of the real or imaginary part 

of an off-diagonal element of a scattering matrix (analogous to a cross-admittance in vibration the-

ory).  The results reported in reference [15] are based on the assumption that the scattering object has 

either Gaussian Orthogonal Ensemble (GOE) or Gaussian Unitary Ensemble (GUE) statistical prop-

erties, and the AE requirement is not considered explicitly.  The analysis of reference [15] is not 

immediately applicable to engineering systems, and despite the extent of the literature on random 

scattering matrices it is not clear whether the AE requirement will apply to vibrational FRFs, as dis-

cussed in what follows. 

As noted above, the AE requirement is justified in nuclear physics by arguing that the properties 

of the Lorentzian average also hold for the ensemble average.   For this to be a valid argument H must 

ergodic, and this implies that H must also be a stationary random function [11], or at least approxi-

mately stationary over the window of the frequency averaging function.  While this condition is likely 

to be met in nuclear physics, the condition is much less likely to apply in vibration and acoustics.  It 

is therefore not possible to draw conclusions regarding the properties of the ensemble averaging pro-

cess by appealing to ergodicity arguments.  Nonetheless, simulations of random vibrational systems 

indicate a strong tendency for the ensemble average E[] to have the same properties as the Lorentzian 

average, so that E[ ( )] (E[ ])f H f H= , and this raises the question of whether this is in some way a 

universal result, and if so, what conditions must apply for the result to hold.  This issue is addressed 

in the present paper. 

The properties of the Lorentzian average of an FRF are considered in Section 2.  The properties of 

the ensemble average are then explored in Section 3 by using random point process theory [16] to 

model the system randomness.  It is found that the ensemble average will have the same properties 

as the Lorentzian average providing the kernel functions that appear in the random point process 

theory are stationary.  The stationarity of the kernel functions does not imply that the FRF is station-
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ary, and the condition is actually quite weak: the kernels need to be either locally stationary, or sta-

tionary under an unfolding transformation [1,17], and there is evidence to suggest that these condi-

tions are met for highly random vibratory systems.    An example application is considered in Section 

4, and a summary of the findings of the work is then given in Section 5.  The present paper is an 

abbreviated version of a much more detailed analysis contained in reference [18]. 

2. The Lorentzian frequency average 

The Lorentzian average of a function of frequency ω , ( )H ω  say, is defined as a weighted integral 

in the form 

0 0 0( ) , ( ) ( , , )d / ( , , )dH H W Wω ω Γ ω ω ω Γ ω ω ω Γ ω
∞ ∞

−∞ −∞

= ∫ ∫ ,                     (1) 

where the Lorentzian weighting function W is given by  
1

2 2

0 0
( , , ) ( )W ω ω Γ ω ω Γ

−
 = − +  .                                          (2) 

The parameter 0ω  locates the peak of the weighting function, while the parameter Γ determines the 

width of the function: the half-power bandwidth (i.e. the width of the function at half the peak ampli-

tude) is given by 2Γ .  If  ( )H ω  represents a frequency response function, then the associated im-

pulse response function ( )h t   is given by the Fourier transform relation  

( ) ( ) d
i t

h t H e
ωω ω

∞

−∞

= ∫ .                                                   (3) 

 If the impulse response is causal then by definition ( )h t  is zero for 0t <  and this implies that ( )H ω  

is analytic in the lower half-plane.  The integrand in the numerator of Eq. (1) therefore has a single 

pole in the lower half-plane, located at 0 iω ω Γ= − , and contour integration around a contour enclos-

ing this half-plane yields 

0 0( ) , ( )H H iω ω Γ ω Γ= − .                                              (4) 

It can similarly be demonstrated that the Lorentzian average of any causal function of ( )H ω  can be 

expressed as 

0 0( ) , [ ( )]f H f H iω Γ ω Γ= − ,                                             (5) 

from which it follows that 

( )0 0( ) , ,f H f Hω Γ ω Γ= .                                             (6) 

Thus the Lorentzian average of a function of H is equal to the value of the function when evaluated 

at the Lorentzian average of H.  At first sight Eq. (6) is a very unexpected result, since it implies, for 

example 
22

0 0
( ) , ( ) ,H Hω ω Γ ω ω Γ= .                                           (7) 

Were ( )H ω  real then Eq. (7) would imply that the variance of the function along the frequency axis 

is zero, and therefore the function has a constant value.  However, it should be recalled that in general 

( )H ω  is a causal complex frequency response function; the real and imaginary parts of a causal 

function are related by the Kramers-Kronig relation [19], and it is this dependence between the real 

and imaginary parts that allows Eq. (7) to apply even when the function is non-constant.  

 It is interesting to consider whether Eq. (6) might apply to the ensemble average of a random 

frequency response function at a single specified frequency ω , and this issue is addressed in the 
following section. 
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3. The ensemble statistics of causal functions 

This section will consider the statistical properties of a set of causal frequency response functions 

1 2{ ( ),  ( ),...,  ( )}MH H Hω ω ω  which all have the same set of simple poles.  Each function can be ex-

panded in terms of poles jω  and residues ja in the form  

*

*
( )

j j j

j jj j j

a a a
H ω

ω ω ω ω ω ω

  
= − ≈ 

− + −  
∑ ∑ ,                                       (8) 

which can be generalised slightly to read 
( )( ) ( , ),       1, 2,...,r

r j r j

j

H a h r Mω ω ω ω= − =∑ ,                                    (9)  

where the function ( , )r jh ω ω ω−  has a simple pole at 
jω ω= .  The poles lie in the right upper half-

plane, and they can be written in the form 

exp( ),       ,       arg( )j j j j j j jz i zω φ ω φ ω= = = .                                   (10) 

If the function ( , , )r j ju zω φ is defined so that 

( , , ) ( , )ji

r j j r ju z h z e
φ

ω φ ω ω≡ − ,                                           (11) 

then Eq. (9) can be written as 
( )

( ) ( , , )
r

r j r j j

j

H a u zω ω φ=∑ .                                              (12) 

For future reference it can be noted that when viewed as a function of jz , at fixed ω  and jφ , the 

function ( , , )r j ju zω φ  will have a simple pole in the right lower half-plane. 

 The joint statistics of the frequency response functions can be explored by considering the char-

acteristic functional [16,20], which is defined as  

1 2

1

[ ( ), ( ),..., ( )] E exp ( ) ( )d
M

M r r

r

i Hϕ θ ω θ ω θ ω ω θ ω ω
∞

= −∞

  
=   

   
∑ ∫ .                    (13) 

The characteristic functional can be expressed in terms of the joint cumulants of the frequency re-

sponse functions in the form [16,19]                  
2

1 2 1 2 1 2 1 2

1 1 1

exp [ ( )] ( )d [ ( ), ( )] ( ) ( )d d ...
2

M M M

r r r s r s

r r s

i
i H H Hϕ κ ω θ ω ω κ ω ω θ ω θ ω ω ω

∞ ∞ ∞

= = =−∞ −∞ −∞

 
′ ′ ′ ′ ′ ′= + + 

 
∑ ∑∑∫ ∫ ∫  

(14) 

where []nκ  represents the nth joint cumulant: for example, 1[ ( )]rHκ ω  is the mean value of ( )rH ω  

and 2 1 2[ ( ), ( )]r sH Hκ ω ω′ ′  is the covariance of the two functions rH  and sH  when evaluated at the fre-

quencies 1ω′  and 2ω′  respectively.  If the quantities jz  are taken to constitute a random point process 

and the phase quantities jφ  are (initially) taken to be deterministic,  then the joint cumulants that 

appear in Eq. (14) can be written in the form [16] 

1 2 1 2

1 2

( )

1 2 ... 1 2

0 0 0

1 1 1 2 2 2 1 2

[ ( ), ( ),..., ( )] ... ( , ,..., , )

                                                      ( , , ) ( , , )... ( , , )d d ...d ,

n n n n n n

n n n

H H H k z z z

u z u z u z z z z

α α

α

α
α α α

α α α α

κ ω ω ω

ω φ ω φ ω φ

∞ ∞ ∞

′ ′ ′ = ×

′ ′ ′

∫ ∫ ∫ a
   (15) 

where the kernel functions 
1 2

( )

... 1 2
( , ,..., , )

n n n
k z z z

α

α
α a  are determined by the statistical properties of the 

random point process and the statistics of the residues ( )r

ja .  The residues are assumed to have statis-

tical properties that are independent of the index j, and in what follows, for ease of notation, a quantity 

such as ( )E[ ]r

j
a  is abbreviated to ( )E[ ]r

a .  This assumption amounts to considering the residues ( )r

j
a  
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to be at least locally stationary over the range of modes that contribute significantly to Eq. (12).     

Following Stratonovich [16], the first three kernel functions that appear in Eq. (30) can be written as 
1

1

( )(1)

1 1 1
( , ) E[ ] ( )n

n
k z a g z=a ,                                             (16) 

1 2 1 2

1 2

( ) ( ) ( ) ( )(2)

1 2 1 1 1 2 2 1 2
( , , ) E[ ] ( )δ(z ) E[ ]E[ ] ( , )n n n n

n n
k z z a a g z z a a g z z= − +a ,              (17) 

{ }

31 2

1 2 3

31 2

31 2

( )( ) ( )(3)

1 2 3 1 1 1 2 2 3

( )( ) ( )

2 1 3 1 2

( )( ) ( )

3 1 2 3

( , , , ) E[ ] ( )δ(z )δ(z )

                            3 E[ ]E[ ] ( , )δ(z )

                            E[ ]E[ ]E[ ] ( , , ),

nn n

n n n

nn n

s

nn n

k z z z a a a g z z z

a a a g z z z

a a a g z z z

= − −

+ −

+

a

                   (18) 

and the higher order kernels follow a similar pattern.  In Eq. (18) the notation {}s
 denotes an average 

taken over the distinct permutations of the arguments, and the functions 
ng  are referred to by Stra-

tonovich [16] as the correlation functions of the point process.  The same functions are referred to by 

Lin [20] as the cumulant functions, and in random matrix theory [17] (with a very minor change in 

definition) the functions are referred to as the n-level cluster functions.  Whatever terminology is 

adopted, the functions are dependent on the statistical distribution of the poles of the system, which 

is in turn determined by the ensemble statistics of the system properties.  It can be noted that: (i) in 

all cases the function 1g  corresponds to the modal density of the points, (ii) for a Poisson point pro-

cess, 0ng =  for n>1, (iii) for a point process conforming to the Gaussian Orthogonal Ensemble, the 

functions ng  are available from random matrix theory [17].   Now it can be assumed that 

( , , ) ( , , )r j j r j ju z u zω φ ω φ− ≪ ,                                            (19) 

so that the integrals in Eq. (30) can be extended to an infinite range to yield 

1 2 1 2

1 2

( )

1 2 ... 1 2

1 1 1 2 2 2 1 2

[ ( ), ( ),..., ( )] ... ( , ,..., , )

                                                      ( , , ) ( , , )... ( , , )d d ...d .

n n n n n n

n n n

H H H k z z z

u z u z u z z z z

α α

α

α
α α α

α α α α

κ ω ω ω

ω φ ω φ ω φ

∞ ∞ ∞

−∞ −∞ −∞

′ ′ ′ ≈ ×

′ ′ ′

∫ ∫ ∫ a
(20) 

If the random point process is now taken to be stationary, then the kernel functions have the property 

1 2 1 2

( ) ( )

... 1 2 ... 2 1 1
( , ,..., , ) ( ,..., , )

n n n n n n
k z z z k z z z z

α α

α α
α α

′= − −a a ,                           (21) 

where 
1 2

( )

...n n n
k

α

α′  is a modified kernel involving only the separation of the various poles.  The joint cu-

mulants of the frequency response functions can then be written in the form  

1 2 1 2

1 2

( )

1 2 ... 1 2 1

1 1 1 2 2 1 1 1 1 1 1 2 1

[ ( ), ( ),..., ( )] ... ( , ,..., , )

                      ( , , ) ( , , )... ( , , )d d d ...d .

n n n n n n

n n n

H H H k y y y

u z u y z u y z z y y y

α α

α

α
α α α

α α α α

κ ω ω ω

ω φ ω φ ω φ

∞ ∞ ∞

−

−∞ −∞ −∞

∞

− −

−∞

′ ′ ′ ′≈ ×

 
′ ′ ′+ + 

 

∫ ∫ ∫

∫

a

(22) 

It is important to note that Eq. (21) is a statement regarding the stationarity of the random point 

process, rather than the stationarity of ( )rH ω : depending on the nature of  ( , , )r j ju zω φ , a stationary 

point process may lead to a non-stationary frequency response function ( )rH ω .  Regarding the sta-

tionarity of the point process, it is known that the modal density 1( ) ( )n z g z≡  of a number of common 

structural or acoustic components is not constant with frequency, and strictly Eq. (21) does not apply 

to such cases.  The modal density of a bending beam, for example, is proportional to 1/2z− , while the 

modal density of an acoustic volume is proportional to 2z  [3,8].  However, there are two ways in 

which the use of Eq. (21) can be justified even for components of this type: (1) if the frequency of 

interest is sufficiently high, then the modal density can be considered to be locally constant over the 

modes that significantly contribute to the system response, and the same approximation can be ap-

plied to the higher order kernel functions; (2) the process of unfolding can be applied, in which the 

variable z is transformed to a new variable (the number count N) which has a constant modal density 
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– the transformed kernels are then found to be stationary to a remarkable degree for many systems 

[17].   If Eqs. (21) and (22) are accepted, then progress can be made by noting that: (i) each function 

1 1( , , )
jn j j ju y zω φ −

′ +  has a single pole in the complex 1-planez and, following the discussion below 

Eq. (12), this pole lies in the lower half-plane, (ii) each function 
1 1( , , )

jn j j ju y zω φ −
′ +  is analytic in the 

upper half-plane, (iii) the integral over 1z  around a half-circle in the upper half-plane, centred at the 

origin and of infinite radius, is zero providing 1r > , (iv) for r=1, the integral around the half-circle 

has a finite, non-zero, value.   By performing the integral over 1z  around a contour enclosing the 

upper-half plane it then follows from Eq. (22) that  

1 21 2[ ( ), ( ),..., ( )] 0      1n n nH H H
αα ακ ω ω ω α′ ′ ′ = > .                              (23) 

1[ ( )] E[ ( )] 0r rH Hκ ω ω= ≠ .                                              (24) 

It follows immediately from this result and Eqs. (13) and (14) that 

1 2 1 21 2 1 2E[ ( ) ( )... ( )] E[ ( )]E[ ( )]...E[ ( )]n n n n n nH H H H H H
α αα αω ω ω ω ω ω′ ′ ′ ′ ′ ′= ,              (25) 

E[ ( )] E[ ( )]s s

r rH Hω ω= .                                                 (26) 

This implies that the property noted previously for the Lorentzian average in Eq. (6) also applies to 

the ensemble average if the function f  is a polynomial function or has a convergent Taylor series 

expansion, so that 

E[ ( )] (E[ ])f H f H= .                                                    (27)  

These results imply that the Lorentzian and ensemble averages share the same properties, even though 

the results yielded by the two averaging processes may differ.  The validity of Eq. (27) is explored 

numerically in the following section.  

4. Numerical example 

To illustrate the foregoing theory, an example system is considered which consists of a simply 

supported flat plate which is randomised by the addition of a number of small masses that are attached 

in random locations to generate an ensemble of systems.  The out-of-plane motion of the plate at two 

locations 1x  and 2x  is investigated: the response at these locations ( 1q  and 2q  say) to applied forces 

1F  and 2F  of frequency ω  can be written in the form 

1 1

2 2

( )
q F

q F
ω

   
=   

   
H ,                                                      (28) 

where the admittance matrix H is given by 
2

1 1 2

22 2

1 2 2n n

( ) ( ) ( )1
( )

( ) ( ) ( )2

j j j

j j j jj j ji

ϕ ϕ ϕ
ω

ϕ ϕ ϕω ω β ω ω

    
=      − +    
∑

x x x
H

x x x
.               (29) 

Here njω  is the jth natural frequency of the plate, jϕ  is the jth (mass normalized) mode shape, jβ  

is the associated damping ratio, and proportional damping has been assumed.  The modal parameters 

are random due to the presence of the small masses, and they can be computed by formulating the 

equations of motion of the plate using the Lagrange-Rayleigh-Ritz method, with the modes of the 

bare plate employed as trial functions.  The dynamic stiffness matrix of the plate is given by 
1( ) [ ( )]ω ω −=D H .                                                     (30) 

Numerical simulations of the random matrices H and D can be used to test various findings of the 

foregoing analysis.  To this end a steel rectangular plate of length 1 0.9ml = , width 2 0.7ml = and 

thickness 2mm is considered.  The Young’s modulus is 11 22 10 N/m× , the density is 37800 kg/m , the 

Poisson ratio is 0.3, and the damping factor is set at 0.015.jβ =   The two ports are located at 

1 1 2(0.3  0.43 )l l=x  and 2 1 2(0.23  0.71 )l l=x . The randomization is realized by the addition of 10 point 
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masses, randomly located on the plate with a uniform distribution, with each mass having 2% of the 

mass of the bare plate.  In the results that follow, unless otherwise stated, averages have been taken 

over an ensemble of 2000 realizations.  The modal density of the bare plate is ( ) 0.0164n ω =  

modes/rad/s, which means that the average modal spacing is 61.13 rad/s.  The frequency range con-

sidered (0 to 6000 rad/s) covers approximately 100 resonant frequencies, and over this frequency 

range the modal overlap factor n2 j jm nβ ω=  varies linearly from 0 to 3.  

 Three realisations of the frequency response function 
11( )H ω  are shown in Fig. 1, together with 

the analytical result for the ensemble average value, which is given by 11E[ ( )] / (2 )pH i n Mω π ω= −  , 

where pM  is the mass of the bare plate [8].   It can be seen that the randomization approach has 

produced a great deal of variability in the frequency response function.  

 

 

 Figure 1: Three realisations of the response                     Figure 2: The average mobility 

 

 In Fig. 2 the validity of Eq. (27) is explored for the particular case 
1 1 1

11 11 11 11( )         E[ ] E[ ]f H H H H
− − −= ⇒ = .                                    (31) 

The two ensemble average results shown in the figure (representing each side of the equation) show 

strong validation of Eq. (31) . 

The results shown in Fig. 3 relate to the off-diagonal component 
12D  of the dynamic stiffness  

 

Figure 3: The average coupling stiffness 

 

matrix, where the concern is with the validity of the following expression: 

12 21

11 22 12 21 11 22 12 21

E[ ]
E[ ( )] E

E[ ]E[ ] E[ ]E[ ]

H H
f

H H H H H H H H

 − −
= = 

− − 
H  .               (32) 

The numerical results confirm the validity of Eq. (32), despite the highly non-stationary character of 

the expectation (the left hand right sides of Eq. (32) are each plotted in the figure). 
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5. Conclusions 

In brief, it has been shown that Eq. (27) is a remarkable property of random frequency response 

functions.  Further details and examples are given in reference [18]. 
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