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1. INTRODUCTION

In this paper three vowel-onset detection strategies are presented. Vowel-onsets appear to be ct impor-
tance for both speech production and perception. A previously developed algorithm [11] is compared with
detection schemes based on simulation oi a particular response type of cochlear nucleus cells and on
neural networks tor pattern matching. The comparison between detection algorithms gives clues about
the relative Importance of physical character'stics of the speech signal tor vowel-onset detection.

2. VOWEL-ONSET DETECTION

A prominent characteristic cl speech signals is the presence of simultaneous trequency and amplitude
modulation. Low-rate modulations can be tound on a suprasegmental level in the pitch contour Ior FM and
in the syllabic structure in the case at AM. At the syllabic level. modulations at high rates occur tor in-
stance in the last transitions between phonemes. There is growing evidence that these last transitions are
imponant tor phoneme recognition. Especially in the case at a plosive—vowel combination a shon portion
oi the speech signal. typically 20-40 rns. appears to contain sulficient information Ior determination ol the
place oi articulation ol the consonant or the identity at the vowel [12,27]. In general. much perceptually
relevant information is present in the speech portions which show substantial spectral change [26.7.20].

Hermes [11] concentrates on the concept ol vowel onset defined as the moment at which a listener starts
to perceive the vowel in a CV utterance. By using a gating paradigm. a trained phonetician can aurally
detect vowel onsets with an accuracy better than 20 ms. These onsets are believed to coincide with both
relatively rapid spectral change and an increase in the amount at Vowelness'. Intonation research has
shown that the prominence lent to a syllable is allected by the position of the pitch movement relative to
the vowel onset [8,9]. Hermes [11) presents an algorithm tor automatic detection oi vowel onsets in natu-
ral speech.

The algorithm has been applied in a tutorial system tor teaching intonation to profoundly deat children.
The pertormance of the algorithm was judged to be unsatislactory in that too many vowel onsets were
missed, typically in the order cl 10%. Modiiication oI the algorithm, by incorporating processing stages
which were morepsychophysically inspired. could not substantially improve its pertormance. A brieI de«
scription ol the Hermes [11] algorithm shall be presented in section 3.

This paper describes turther investigations at automatic vowel-onset detection by comparingthe Hermes
[tt] algorithm to two alternative detection strategies. Section 4 ol this paper descrmes a detection
scheme based on simulated cochlear nucleus responses. A multilayer perceptron approach is presented
in section 5. Comparative pertormance tests on two large databases containing natural speech are cle-
scribed in sections 6.1 and 6,2,
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3. VOWEL-STRENGTH MEASUREMENT

The Hermes [11] algorithm for vowel-onset detection is based on pitch-synchronous measurement of
vowel strength. This measure expresses both the degree to which a tormant pattern is present In the
amplitude spectrum ct a pitch period oi the speech sig-
nal. and its estimated pitch strength. Vowel onsets are SM“ Damn"
associated with the positive maxima of the smoothed rut..-
derivative ot the sequence oi voweistrength
measurements within a sentence. The algorithm wfll be
refereed to as VOD in the lollowing. For turther detafls
oi the algorithm see Hermes [1 1].

Figure 1 shows the time signal oi the sheathed-deriva-
tive filter that is used for convolution with the sequence
at vowel-strength measurements. The eiiective duration
oi the filter is approximately 100 ms. Both the auditory . _
model and the MLP schemes apply a similar fitter tor Figure 115mlheddeflvaltv9fllter

 

vowel onset detection.

4. SIMULATION OF COCHLEAR NUCLEUS RESPONSES

The initial motivation tor investigating simulations of peripheral auditory processes was based on over-
shoot phenomena observed in the cochlear nerve (e.g. [25,51). The hypothes'e was that rapid changes in
the spectre-temporal domain. i.e. vowel onsets. are enhanced in firing rate proiiles of cochlear nerve il-
bres due to short-term adaptation. The dynamic ranges oi single nerve fibres however are generally too
small to provide ditterential coding over the whole speech range. The auditory system seems to be pro-
vided with a continuum of nerve fibres with ditterent thresholds and dynamic ranges [14.4]. often a we
gorisation into a low- and a high-threshold population is made. To code spectral information in terms ot
discharge rate over the whole range at hearing a combination at both fibre types is necessary.

Such acombination is found in the cochlear nucleus which is the tirst stage in the central audith path-
way [24]. Stellate cells. which show ‘transient chopper response patterns. receive excitatory input irom
both high and low threshold cochlear nerve fibres [1]. The characteristic trequencies oi these fibres are
around 1 bark at the characteristic trequency oi the stellate cell [23,24]. The cell receives inhibition irom a
relativer large receptive field. Spontaneous activity is often absent and dynamic ranges are small [22).
Blackburn and Sachs [1] showed that the spectrum ot a synthetic vowel is preserved in the rate proliles oi
transient choppers over a wide dynamic range (3575 dB SPL). At the level at the cochlear nucleus. tran-
sient chopper responses may provide the most usetul information tor vowel-onset detection [13].

4.1 The CNet Model -
The CNET model comprises a simulation oi the eurfitory periphery and at various response types in the
VCN (see [17,18] tor details). The peripheral part at the model incorporates:

- 32 channel. remrsive 4th order gamma tone fillerbank [2.3].
- Fitter output sealing tor :

- Hearing threshold adjustment.
- Dynamic range extension.

~ Hair-cell model [16].
- Spike generation on basis cl expected tiring rates.
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The dynamic range extension is introduced tor the
simulation two populations of cochlear nerve fibres:
one with high spontaneous rates (SOsp/sec) and
human audiogram thresholds [6] and another with
low spontaneous rates (tSsplsec) and thresholds
15 dB above the normal human thresholds.

Chap-T Neurone Array

 

Simulation ot cochlear nucleus responses is based
on a point-neurone model. where the membrane
potemial is controlled by the Goldman-Hodgkin-
Katz equation. Instead ol generating action poten-
tials, we concentrate on the extracellular potential
relative to the firing threshold.The output ot the
transient chopper simulation is the extracellular
potential (re threshold) of an array of 22 neurones.
Centre trequencies ct those neurones range trom
0.2 to 2.6 kHz with 0.5 bark spacing.

ct strum Activlty
02 Rollo or Adivlly
o Temper-ll Spurn;
r ca rm Slunglll )

 

  
     

   

4.2 Vowel-Onset Detection Scheme

The vowel-onset detection scheme integrates the
activity of the neurone array into two bands,
roughly corresponding to the lirst and second lor— . I VowelOmm

mant region. Band 1 spans the centre-lrequency 59”” 23 DE‘BCF‘W Somme based 0"”3590'15950'
range [mm 02 up to 1.1 kHz. band 2 receives input! simulated transrent choer neurones.

lrom 0.8 up to 2.6 kHz. Activity in both bands is averaged over centre lrequency and low-pass filtered in
time by leaky integration (-3 dB points of the LP mter at -25 Hz). The signals AL(t) and AH(t), as shown in
figure 2. contain the LP filtered activity, Onsets are lound by taking the smoothed derivative as described
in section 3, but with ettective duration ~40 ms. resulting in the signals OL(t) and OHtt). Vowel-onset
candidates are tound at the positive maxima oi OL(t) with synchronous increase at activity in the second
band. i.e. 0H(t) > o.

   

In order to exclude false alarms. vowel-onset candidates should meet the following criteria:

(:1 Sustained activity. The activity averaged over 25 ms following the vowelonset candidate should
be at least half the activity at the vowel-onset candidate. in this way, short bursts ol activity.
which are olten tound in plosive contexts, are discarded,

c2 Ratio or activity. The ratio oi the activity in both bands should be w‘nhin a lower and an upper
bound. This criterion ideally excludes nasals because most ot their spectral energy is in the lower
band and. mutatis mutandis. ideally discards lricatives.

c3 Temporal spacing.
A It two consecutive onsets are lound while the activity in band 1 is continuously increasing.

then the lirst vowel-onset candidate is discarded. In this way the vowel at a CV combination
is detected it the consonant could not be excluded by criterion 02. .

B. It the activity in band 1 does decrease between the consecutive onsets. the temporal
spacing between the onsets should be at least 60 ms.

Figure 3a-e displays the activity and onsets signals tor a Dutch sentence from the PM database of section
6.2 (sentence 13: "Eindeliik kwam de trein op gang”).
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chopper responses show
phase locking up to approxi-
mately 400 Hz ior pure tone
stimulation. lnionnation about
voicing oi the speech signal
could thus in general be de-
rived. A rather ad-hoc solution
is to calculate the short-term
autooorreiation oi the output
of each transient-chopper
neurone. These autooorrela-
iion tunations are summed
over all neurones to obtain
the summary autooorrelcgram
(cl. I191). The amplitude oi
the peak oi the summary
autocorrelation is taken to
represent the pitch strength
(see figure Be). In this ex-
tended scheme, referred to

as CN—ACF. a criterion is
introduced that takes voicing
into account:

 

04 For each vowel-onset
candidate, the corresponding
pitch strength should be a
above 10 % oi the maximum son "00 “0°
pitch strength observed in the run-rm.”
utterance.

 

Figure 3: (a) Wevelorm oi PM sentence 13, (h) Activity in band 1 at 55 dB
SPL, (c) Smoothed (positive) derivative at band 1. (d)-(e) Activity and
smoothed derivative of band 2, and (i) Amplitude oi the peak at the summary
autoconelogram. Actual vowel onsets are marked by vertical lines

All parameter settings given
above were iound by a trial
and error method

 

5. MULTi-LAYER PERCEPTRONS

A possible weak point of the manually adjusted detection scheme is that the decision boundary lor the
vowel/non-vowel categories may not be optimal. MLPs have been shown to be excellent tools ior pailem
classification so that they were used as a “vowel identification slage‘. Three sets oi experiments were
periormed:

1. Classification perlormance was compared using the aud‘nory model and mel scale spectra as input
to the neural network to ensure that the auditory model signal presentation is at least comparable
to conventional pre-processing techniques.

2. The neural network was trained with met-scale spectra with and without amplitude iniorrnation
(spectra normalised lrame by irame) to evaluate the importance oi amplitude cues tor the task.

3. The network perlon'nance lor input with the reduced spectral representation as used in the CN
paradigm was compared with performance ior input at the lull auditory model resolution.
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5.1 Network Architecture
The output represemation ol the network was pre-detemtined by the chosen postprooessing: one unit,

representing the presence/absence at a vowel In its activation. Full and reduced spectral represemations

were experimented with (26/25 and 2 input units). Partormance tor a range oi 0-10 hidden units was

evaluated. The best results were obtained tor 2-5 hidden units. It no hidden units are used the network
will not team. while 10 hidden units cause ‘over-training': the network pertorms very well on the training

task. but not the test data.

5.2 Network Training
Neural networks are dillicult to train with time varying signals because the standard network architectures

do not allow tor the concept ol time. The training paradigm employed was to train the network purely as a

pattern matching stage. The neural network was presented with single spectra calculated over 25.6ms

long time slices, either lrom the met-scale spectra or by the auditory model. Spectral resolution was 26 or

2 bins spanning (1.2-3.3ka tor the auditory model and 25 lrequency bins (0-5 kHz) lor the met scale

spectra. Training samples were taken starting at the aurally detected vowel onsets and 25.6w alter the

reierence data. The two spectra were checked visually to exclude erroneous training data caused by earty

detections or very short vowels. Training data tor the ‘non-vowel‘ category was chosen in two passes.

Initially a small set 01 examples ol non-vowels and silences chosen. In a second pass examples were

added at positions where the network wroneg detected vowel onsets.

The MLP was trained using standard back-propagation with a learning rate of 0.0005 and a momentum

term at 0.1. to prevent over-training an error threshold ol 0.05 was set. Larger teaming rates or laster

training algorithms. such as resilient propagation and quldtprop, were experimented with but proved un-

satisfactory [28]. ' ‘

The networks were trained in steps ol 100 training cycles until the summed error in the vowel onset de-

tection parlonnance no longer declined. usually lor 400-600 cycles. Perlorrnance on the test data. luil T

sentences. usually deteriorated as training progressed past the optimal point.

5.3 Vowel-Onset Detection

The sentences, processed in
1ms steps. were presented to

the network and the output unit

activation was recorded. The

trace. representing vowel pres-

ence was then processed using
the onset litter used by both

Hermes and in the auditory

model. The only ditlerence was

that a threshold at 0.6 was
used belore vowel onsets were
detected. An example neural
network output lor PM sentence
13 is given in figure 4' ritNeurai network a r- ler sentence 13. Reference - Ints marked b arrows

 

6. COMPARING DETEC‘HON PERFORMANCES

In Hermes [11] a 28 sentence database. ralerred to as 'T-sentences‘. was used tor the pertormance lest.

Both the CN (CN-ACF) and the MLP approach were optimised tor this database. In 6.1 we will present
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the comparative tests Ior this database and in 6.2 the performances [or a new database will be described.

In all tests, the automatically detected onsets will be compared to aural detections. also called actual on-

sets. Delected onsets should be within +l- 50 ms to the actual onsets. Performance will be marked by the

missed onsets and Ialse alarrrs, as percentages ol the actual number oi onsets. Moreover, accuracy fig-

ures indicate the proportion of automatically detected onsets that are within +4-20 ms of the actual onsets.

6.1 The T-Sentence Database
The database contained Dutch read speech Irom non-professional speakers (14 male I 14 female). The

total number of actual onsets was 377. In table 1 the periorrnance of the difterent approaches is given.

onsets '1. “A “lo

"—1:-

%ECN 5565 SPL 86

“mm-

3ON ACF 55dB SPL 11 B7

.5:-
—

     

  

     

   

   

 

TABLE 1: Comments

T database results

CN 35dB SPL  

  

  CNAcrvsdBSPL "-
MLPMels ra 9/18 85/81 sent I s so normalised

   

  

MLP 55dB train 55 10/9 9 l s as l as trained onl on

MLP 35dB train all 25 l 17 12/10 86/90
MLP 55dBtraln all 19m 21 121 76/82

   

In the CN (—ACF) approach, the sound pressure level of 35 dB SPL was seen to be too low. Introduction

of voicing information in the CN scheme did reduce the number of false alarms substantially. Most of all

this was achieved by rejecting vowel-onset candidates for unvoiced plosives and Irlcatives. In VOD, the

main category of missed onsets were schwas. in unaccented syllables. This also holds for the CN (-ACF)

results at 55 and 75 dB SPL.

Neural networks are good pattern classification tools, as the training data. particularly for the met-scale

spectra shows. It the signal is normalised. so that each spectrum contains ampliIUde inlormation. the pure

pattern matching strategy performs adequately well, vowel onset detection perlormance is good (9%

missed) but the network introduces too many false alarms (9%). Missed onsets occurred mostly tor

schwas and high vowels like lil and Ill whereas Ialse alarms were found mostly in Ill. Ir/ nasal and long

vowel contexts. The performance deteriorates significantly when the amplitude cues are removed from

the mel spectra.

Training the MLPs with data from the auditory model proved less successful than training with moi-spec-

tra largely because the auditory model representation changes with amplitude. When the network was

trained and tested on one amplitude level only. the perionnance is comparable to the other approaches.

but training on all levels simultaneously does not give satisfactory results. This limitation can easily be

avoided by scaling the input to a fixed level or by using one ol a number of amplitude specific networks

matched to the signal level.
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6.2 The I’M-Sentence Database
A database was composed by randomly selecting 28 sentences from the Plomp a Mimpen [20] set. This
database consisted at 56 Dutch sentences. read by 14 male and 14 temale non-protessional speakers.
The number at actual vowel onsets was 466. None at the detection schemes were optimised torthls data.

    myPM database result: onsets ‘36 9t, -

"-3-—
“mm-—
“1-—
“mu-m—
mu“—
"-1."—
“un—

mim-

mm:-

   

The number ot false alarms is substantially higher tor all schemes than the respective number for the T-
sentence database. Missed onsets mainly occurred tor schwa, [ii and Id vowels respectively in the VOD
and CM schemes. False alarms were mainly lound in schwa-like and M contexts tor VOD and in schwa-
Iike. m and unvoiced plosive contexts tor the CN schemes.

The MLPs pertcnned very well on the previously unseen PMsentences indicating that the networks are
extracting useful teaturas [rent the signal rather than performing a simple pallem matching task. The
pertormance tor the met-spectra and the amplitude dependent auditory model daIa are very competitive.
As expected trorn the T sentence experiment the pedormance tor the network trained on all signals levels
is disappointing

7. DISCUSSION

In this paper we have assumed that human vowel-onset detection ls based on a process ot categorical
perception ot vowels versus non-vowels: more specifically. vowel onsets are contrasted with other onsets.
Another hypothesis may state that vowekanset detection is derived indirectly trorn a phat-tame recognition
process. In that case, vowel-onset detection will be governed to a great extent by higher-order processes
in speech perception which will be dittiwll to model.

One may interpret the present comparative tests in terms oi the relative importance cl signal character-
islics like amplitude, periodicity and spectral cement. Nonnalising the input spectra in the MLP scheme
resulted in moderate detection pertormance. indicating that amplitude inlorrnation plays a role. Both VOD
and the CN schemes take amplitude into account. Introduction ol inlorrnation about the periodicity ot the
speech signal in CN—ACF did reduce the number at talse alamis while leaving the missed-onset rate al-
most unalfected. On the other hard. voicing information is not present in the meleealed Input spectra In
the MLP approach. Nevenheless. the missed—onsets figures obtained with this approach were satlslac-
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tory. This may indicate that pitch strength is taken as an secondary source at iniorrnation only. The rather
crude spectral weighing in the CN (-ACF) and MLP schemes gives support to the hypothesis that vowel-
onset detection does not rely on detailed spectral analysis.

Vowel-onset detection can also be conceived as an approach tor automatic syllabirrcaticn. In this resped.
the question rises what the relationship is between the vowel onset within a syllable and its Perceptual
Centre (P—centres: [15]). This topic is addressed by current research.
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