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1. INTRODUCTION

In this paper three vowel-onset detection stralegies are presented. Vowel-onsels appear to be of impor-
tance for both speech production and perception. A previcusly developed algorithm [11] is compared with
detection schemes based on simulation of a particular response type of cochlear nucleus cells and on
neural networks Ior pattern matching. The comparison betwaen detection algorithms gives clues about
the relative imponiance of physical characteristics of the speech signal for vowel-onsel detection.

2. VOWEL-ONSET DETECTION

A prominent characteristic of speach signals is the presence of simultaneous frequency and ampliude
modulation. Low-rale modulations ¢can be found on a suprasegmental level in the pitch contour for FM and
in the syllabic structure in the case of AM. At the syllabic level, modulations at high rates occur for in-
stance in the fasl transitions between phonemes. There is growing evidence that these fast transitions are
important for phoneme recognition. Especially in the case of a plosive-vowel combination a short portion
of the speech signal, typically 20-40 ms, appears to contain sulficient information for determination of the
place of ariculation of the consonanl or the identity of the vowel! [12,27], In general, much perceptually
relevant information is present in the speech portions which show substantial spectral change [26,7,20].

Hermes [11] concentrates on the concept ol vowal onset defined as the moment at which a listener starts
1o perceive the vowel in a CV utlerance. By using a galing paradigm, a trained phonetician can aurally
detect vowal onsels with an accuracy batter than 20 ms. These onsets are believed to coincide with both
relatively rapid spectral change and an increase in the amount of ‘vowelness'. Intonation research has
shown that the prominence lent to a syllable is affacted by the position of the pitch mavement relative 1o
the vowe! onset [8,9]. Hermes [11] presents an algarithm for automalic detection of vowel cnsets in natu-
ral speech.

The algorithm has been applied in a tutorial system for teaching intonation to profoundly deaf children,
The performance of the algorithm was judged to bae unsalisfactery in that too many vowel onsels were
missed, typically in the order of 10%. Modification of the algorithm, by incorporating processing stages
which were more psychophysically inspired, could not subslantially improve its performance. A briel de-
scription of the Hermes [11] algorithm shall be presented in section 3.

This paper describes further investigations of automalic vowel-onset deteclion by comparing the Hermes
[t1] atgorithm to two altemative detection stralegies. Section 4 of this paper describes a deteclion
scheme based on simulated cochlear nucleus responses. A multi-layer perceptron approach is presented
in section 5. Comparative performance tests on two large databases containing natural speech are de-
scribed in seclions 6.1 and 6.2
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3. VOWEL-STRENGTH MEASUREMENT

The Hermes [11] algorithm for vowel-onset datection is based on pitch-synchronous measurement of
vowel strength. This measure expresses both the degree 1o which a formant pattern is present in the
amplitude spactrum of a pitch period of the speach sig- Amp
nal, and its estimated pitch strength. Vowel onsets are

Sowothed Derfvatlve
associated with the positive maxima of the smoothed Fllter -
derivative of the sequence of vowelsirength
measurements within a sentenca. The algorithm will be
referaed to as VOO in the lollowing. For further details
of the algorithm see Hemes [11]. ° S

Figura 1 shows the time signal of tha smoolhed-deriva-
tive filter that is used for conveolution with the sequence
of vowel-strength measurements. The effective duration
ol the Gtter is approximately 100 ms. Both the auditory .
modet and tha MLP schemes apply a similar fier for | Figure 1: smoothed derivative fiter
vowel onse! detection.

4. SIMULATION OF COCHLEAR NUCLEUS RESPONSES

The initial motivation for investigating simulations of peripheral auditory processes was based on over-
shoot phenomena observed in the cochlear nerve (8.g. [25,5]). The hypothesis was that rapid changes in
the spectro-temporat domain, i.e. vowe! onsels, are enhanced in firing rate profiles of cochlear narve fi-
bres due fo shon-term adaptation. The dynamic ranges of single nerve fibres howaver are generally loo
small to provide differential coding over the whola speech range. The auditory system seems to be pro-
vided with a continuum of nerve fibres with ditferent threshokds and dynamic ranges [14,4]. Often a cate-
gorisation into a low- and a high-threshokd population is made. To code spectral information in terms of
discharge rate over the whole range of hearing a combination of both fibre types is necessary.

Such a combination is found in the cochlear nucleus which is the lirst stage in the central auditory path-
way [24]. Stellate cells, which show ‘ransient chopper' response patierns, receive excitatory input from
both high and low threshold cachlear nerve fibres [1]. The characteristic frequencies of thesa fibres are
around 1 bark of the characteristic frequency of the stellale cell [23,24]. The cell receives inhibition from a
relatively large receplive field. Spontaneous activity is often absent and dynamic ranges are small [22].
Blackburn and Sachs [1] showed that the spectrum of a synthetic vowel is preserved in the rate profiles of
transient choppers over a wide dynamic range (35-75 dB SPL). Al the level of the cochlear nucleus, tran-
sient chopper responses may providae the most uselul information for vowel-onset detection [13].

4.1 The CNet Model .
The CNET model comprises a simulation of the auditory periphery and of various response types in the
VCN (ses [17,18] for details). The paripheral part of the modal incorporates:
- 32 channel, recursive 4th order gamma tone fillerbank [2,3].
- Filter cutput scaling for :
- Hearing threshold adjustment.
- Dynamic range exlension.
- Hair-cell model [16).
- Spike generation on basis of expected firing rates.
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The dynamic range extension is introduced for tha

simulation two populations of cochlear nerve fibres: I Chop-T Neurone Array I
one with high spontanecus rales (50sp/sec) and
human audiogram thresholds [6] and ancther with /\
low spontanecus rates (15sp/sec) and thresholds | cr.02.1.1kH: Cr: 0.8 - 2.6 kHx
15 dB above the normal human thresholds. Average Average

; |
Simufation of cochiear nucleus responses is based
on a point-neurone model, where the mambrana M'm)mm MN;"'“" u-m}mm
potential is contralled by the Goldman-Hodgkin- ! ALY AH(Y
Katz equation. Instead of generating action poten- - l
tials, we concentrate on the extraceliular potential Onset Filter \ Ouset Filter
relalive 1o the firing thrashold. The output of the oL _ OH(
transient chopper simulation is the extracellular
potential {re threshold) of an array of 22 neurones.
Cenlra frequencies of those neurones range from CI Sustalned Activity
0.2 to 2.6 kHz with 0.5 bark spacing. C2 Ratlo of Actlvity

3 Temporal

4.2 Vowel-Onset Detection Scheme rce m::r s,:m?

The vowel-onset detection scheme integrates the
activity of the neurone array inlo two bands,
roughly comesponding to the first and second for- Vowel Onsets

mant region. Band 1 spans the centra-frequency Figure 2: Detection scheme based on responses of
range from 0.2 up 10 1.1 kHz, band 2 receives input | Simulated transient chopper neurones.

from 0.8 up to 2.6 kHz. Activily in both bands is averaged over centre frequency and low-pass filtered in
time by leaky integration (-3 dB points of the LP filter at ~25 Hz). The signals AL{1) and AH(1), as shown in
figure 2, contain the LP fitered activity. Onsets are found by taking the smoothed derivative as described
in section 3, but with effective duration ~40 ms, resulting in the signals OL(l) and OH({t). Vowel-onset
candfidates are found at the positive maxima of OL(t) with synchronous increase of activity in the second
band, i.e. OH{1) > 0.

In order to exclude false alarms, vowel-onset candidates should meet the following criteria:

ct Sustained activity. The activity averaged over 25 ms following the vowel-onset candidate should
ba at least half the activity at the vowel-onset candidate. In this way, short bursts of activity,
which are often found in plosive conlexis, ara discarded.

c2 Ratio of activity. The ratio of the activity in both bands should ba within a lower and an upper
bound. This criterion ideally excludes nasals bacause most of their speciral energy is in the lower
band and, mutatis mutandis, ideally discards fricatives.

c3 Temporal spacing.

A i two consecutive onsets are found whils the activity in band 1 is continuously increasing,
then the first vowel-onset candidate is discarded. In this way the vowel of a CV combination
is detected if the consonant could not be excluded by criterion C2.

B. i the aclivily in band 1 does decrease between the consecutive onsets, the temporal
spacing between the onsets should be at least 60 ms.

Figura 3a-e displays the activity and onsets signals for a Dulch sentence from the PM database of section
6.2 (sentence 13: "Eindelijk kwam de trein op gang™).
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This scheme does not, unlke VOD, include information about the periodicity of the signal. Transient-
chopper responses show
phase locking up to approxi-
mately 400 Hz for pure tone
stimulation. Information about | Ame
voicing of the speech signal '
could thus in generat be de- X

rived. A rather ad-hoc solulion -
is to calculate the shor-term | =C

A (m B.
autocorrelation of the output
of each transient-chopper !

neurong. These autocorrela-

tion functions are summed | oo c.

over all neurones 10 obfain | wmvam A h .
A AN

1
|
|

the summary autocomelogram

.

{cf. [19]). The amplitude of

the peak of the summary | _

autocorrelation is 1aken to vy D.
represent the pitch strength \ \ \\
(see figure 3e). In this ex-

tended scheme, referred o
as CN-ACF, a criterton is Omas R l\
A

introduced that takes voicing | ™™
into account: | A

C4 For each vowel-onset acE ‘
candidate, the comesponding :'::.,
pitth strength should be N A

above 10 % of the maximum e T 300 1000 1500

pitch strength observed in the Time ima)
ullerance,

L

Flgure 3: (a) Wavelorm of PM sentance 13, (&) Activity in band 1 at 55 dB
SPL, (c) Smoathed {positiva) derivative of band 1, (d)-{e) Activity and
smoothed derivative of band 2, and (f) Amplitude of the peak of the summary
autocorrelogram. Actual vowel onsets are marked by vartical lInes

All parameter settings given
above were found by a trial
and error method.

5. MULTI-LAYER PERCEPTRONS

A possible weak point of the manually adjusled detection schema is that the decision boundary for the
vowel/non-vowel categories may not be optimal. MLPs have been shown to be excellent tools for patlem
classification so that they were used as a 'vowel identification stage’. Thrae sets of experiments were
performed:
1. Classification performance was compared using the auditory model and mel scale spectra as input
1> the neural network 1o ensure thal the auditory mode! signal presenation is al least comparable
o conventional pre-processing techniques.
2. The neural network was lrained with mel-scale specira with and withoul amplilude information
{spectra normalised frame by frame) to evaluate the impartance of amplitude cues for the 1ask.
3. The network performance for input with the reduced spectral representation as used in the CN
paradigm was compared with performance for input at the full audilory model resolution,
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5.1 Network Architecture

The output representation of the network was pre-determined by the chosen posiprocessing: one unit,
representing the prasence/absance of a vowel in iis activation. Full and reduced speciral representations
were experimented with {26725 and 2 input units). Performance for a range of 0-10 hidden units was
evaluated. The best results wers oblained for 2-5 hidden units. If no hidden unils are used the network
will not learn, while 10 hidden units cause ‘over-training': the network performs very well on the training
task, but not the test data.

5.2 Network Training

Neural nelworks are ditficult to train with lime varying signals because the standard network architectures
do not allow for the concept of time. The training paradigm employed was 1o train the network purely as a
pattern matching stage. Tha neural network was presented with single spectra calculated over 25.6ms
tong time slices, either from the mel-scale spectra or by the auditory model. Spectral resolution was 26 or
2 bins spanning 0.2-3.3kHz for the audilory model and 25 frequency bins {0-5 kHz) for the mel scale
spectra. Training samples were taken starting at the aurally detected vowel onsets and 25.6ms alter the
reference data. The two spacira ware checked visually to exclude erroneous training data caused by early
detections or very short vowels. Training data for the ‘non-vowel’ category was chosen in two passes.
Initially a small set of examplas of non-vowels and silances chosen. In a second pass examples were
added at positions where the network wrongly detected vowel onsets.

‘The MLP was trained using standard back-propagation with a leaming rate of 0.0005 and a momentum
term of 0.1, 1o prevent over-training an error threshold of 0.05 was sel. Larger leaming rales or faster
training algorithms, such as resilient propagation and quickprop, were experimented with but proved un-
salisfactory [28]. :

The networks were trained in steps of 100 training cycles until the summed error in the vowe! onset de-
lection performance no longer deckined, usually for 400-600 cycles. Perlormance on the test data, ull T
sentences, usually deterorated as training progressed past the optimal paint.

5.3 Vowe!-Onset Detection wmwmwwmww*ﬂmv%wwwb?ﬁamwl
The sentences, processed in [“*°T
ims steps, were presented to [**1 El-  digk  kwam de  trein op  gang
the network and the output unit |**==
aclivation was recorded. The |-
trace, representing vowel pres- s+
ence was then processed using | e
the onset filler used by both |..m-
Hermes and in the audiory |, .-
model. The only difference was
that a threshold of 0.6 was
used belore vowel onsels were |
detecled AI'I B!ample neuraj ==.—._q.l'.'%h e e ede sbe wiws  afw e [T

network output for PM sentence [S=iet i wee o
13 is given in figure 4, figd:Naural natwork output for sentence 13, Reference polnts marked by amows
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6. COMPARING DETECTION PERFORMANCES

In Hermes [11] a 28 sentence databasa, referred to as "T-sentences’, was used for the performance test.
Both the CN (CN-ACF) and the MLP approach were optimised for this database. In 6.1 we wilt present
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the comparalive tests for this database and in 6.2 the performances for a new database will be described.
In all tests, the automatically detected onsets will be compared lo aural detections, alse calied actual on-
sets. Detected onsets should be within +/~ 50 ms to the actual onsets. Performance will be marked by the
missed onsets and lalse alarms, as percenlages of the aclual number of onsets. Moreover, accuracy fig-
ures indicate the proportion of automatically detected onsels that are within +/-20 ms of the actual onsets.

6.1 The T-Sentence Database
The database contained Dutch read speech from non-professional speakers (14 male / 14 female). The
1olal number of actual onsets was 377. In table 1 the performance of the different approaches is given.

TABLE 1: missed false alarms | accuracy Comments

| T database results onsels (%} (%) {%)
VoD 8 2 81
CN 3548 SPL 20 5 85
CN 55dB SPL 10 ] 86
CN 75 dB SPL 10 15 84
CN ACF 3508 SPL 27 4 79
CN ACF 5548 SPL 11 6 87
CN ACF 75dB SPL 10 5] 83
MLP Mal spectra 9./14 9/18 BS781 sent / spac normalised
MLP 35dB traln 35 t3r11 5/8 90/86 2/ 26 Input unks
MLP §5dB train 55 10/9 9/6 88 /88 trained only on
MLP 75d8 train 75 8/9 13/8 81/88 test amplituda

| MLP 35d8B train all 28117 12/10 86190 2 / 26 Input units
MLP 55dB traln ali 19/11 21721 76/82 trained on all amps
MLP 75d8 train all 13/9 22/18 74181 simultaneously

in the CN (-ACF} approach, the sound pressure lovel of 35 dB SPL was seen to be too low. Introduction
of voicing information in the GN scherme did reduce the number of lalse alarms substantially. Most of all
this was achieved by rejecting vowel-onset candidates for unvoiced plosives and fricatives. In VOD, the
main calegory of missed onsels were schwas, in unaccenied syllables. This also holds for the CN (-ACF)
results al 55 and 75 dB SPL.

Neural networks are good pattern classification tools, as the training data, particutarly for the mel-scale
spectit shows. Il the signal is normalised, so thal each spectrum contains amplitude information, the pure
pattern matching strategy performs adequately well, vowel onset detection perdormance is good (9%
missed) but the network iniroduces too many false alarms (9%). Missed onsels occurred mostly for
schwas and high vowels like /i and /If whereas false alarms were found mostly in /U, /i/ nasal and long
vowel conlexls. The performance deterlorates signilicantly when the amplilude cues are removed from
the mel spectra.

Training the MLPs with data from the auditory model proved less successful than training with mel-spec-
ira largely beczuse the auditory model representalion changes with amplilude. When the network was
trained and tested on one amplitude level only, the performance is comparable to the other approaches,
but training on all levels simulianeously does not give satistaclory rasults. This limitation can easily be
avoided by scaling the input 1o a fixed level or by using one of a number of amplitude specific networks
maiched 1o the signal level.
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6.2 The PM-Sentence Database

A database was composad by randomly selecling 28 sentences from the Plomp & Mimpen [20] set. This
database consisted of 56 Duich sanlences, read by 14 male and 14 female non-profsssional speakers.
The number of actual vowel onsets was 466. None of the detection schemes were oplimised for this data.

TABLE 2: missed false alarms accuracy Comments
PM database results | onsets (%) (%] {%)
VoD 7 9 90
CN 35dB SPL 21 10 90
CN 55d8 SPL 9 15 90
CN75dB SPL 11 28 89
CN ACF 35dB SPL 29 B 82
CN ACF $5dB SPL 11 10 N
CN ACF 75dB SPL 11 15 89
MLP MEL Spectra 7/15 10 /25 94 /83 signal/spec normallsed
| MLP 35 train 35 15716 7/8 88794 2/ 26 Input units
MLP 55 train 55 9/8 7/14 83 /80 training on
| MLP 75 train 75 7/8 1ns21 91/87 tost amplitudes only
MLP 35 train all 22/24 12712 87794 2/ 26 Input units
MLP 55 train all 17411 27/29 _82/384 tralning on all
MLP 75 train all 11710 47 /50 74 /80 amps simultansously

The number of false alarms is substantially higher for all schemes than the respective number for the T-
sentence database. Missed onsels mainly occurred for schwa, /v and /e/ vowsls respectively in the VOD
and CN schemes. False alarms were mainly found in schwa-like and /r/ contexts for VOD and in schwa-
like, /rf and unvoiced plosive contexts for the CN schemes.

The MLPs performed very well on the previously unseen PM sentences indicating that the natworks are
extracting useful features from the signal rather than performing a simple paliern matching task. The
performance for the mel-spectra and the amplitude dependent auditory model data are very compelitive.
As expected from the T senlence experiment the performance for the network trained on all signals levels
is disappointing.

7. DISCUSSION

In this paper we have assumed that human vowe!-onsel detection is based on & process of categorical
perception of vowels versus non-vowels; more specifically, vowsl onsats are contrasted with other onsets.
Another hypothesis may slate that vowel-onset detection is derived indirectly from a phoneme recognition
process. In that case, vowel-ofisel detection will ba governed to a great extent by higher-order processes
in speech perception which will be ditficult to model.

One may interpret the present comparative tests in terms of the relative importance of signal character-
istics like amplitude, periodicity and spectral content. Normalising the input spectra in the MLP scheme
resulted in moderate deleclion performance, indicating that amplitude information plays a role. Both VOD
and the CN schemes take amplitude into account. Introduction of information aboul the periodicity of the
speech signal in CN-AGF did reduce the number of false alarms while leaving the missed-onset rate al-
most unaffected. On the other hand, voicing information is not present in the mek-scaled input specira in
the MLP approach. Nevertheless, tha missed-onsets figures oblained with this approach were satislac-
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tory. This may indicate that pitch strength is taken as an secondary source of information enly. The rather
crude speciral weighing in the CN (-ACF) and MLP schemes gives suppert 1o the hypothesis that vowel-
onset detection does not rely on detailed spectral analysis.

Vowel-onset detection can also be conceived as an approach for automalic syllabification. In this respect,
lhe quastion rises what the relationship is between the vowel onset within a syliable and its Perceptual
Centre (P-centres; [15]). This topic is addressed by current research.
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