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ABSTRACT

This paper describes o special Mealy machine called & gen-
eralised stochastic transducer (GST) used to infer letter-
phoneme correspondences from a large set of werd spelling
and their associsted phonemic forms. The main jdea is to
use the 1ransducer to define the mast likely alignment for
each word and based on the alignment, correspondences
sre obtained according to the four neighbourhood connec-
Uvity. We compared the perfermance of the inferred cor-
respondences with the manoally-derived correspondences,
with the inferred correspondences using the delimiting and
dynamic programming (DP) techniques and with the GST
used directly for translation.

1. MOTIVATION

The delimiting and dynamic programming (DP) techniques
(1) {DD) can infer correspondences that can yield similar
performance with the manually-derived ones. However, tle
estimate of the relative index n of the association indices [7]
are inaccurate for long words although the delimiting algo-
rithm reduces the length of the word for the DP algorithm
before inference. In addition, there is no formal basis for we-
ing the delimiting algorithm and the delimited part of Lhe
word is defined by the minimum Euclidean distance that
has no relation to the 1zanslation medel. An allernative is
to assume that stochastic phonographic transduction {3]is a
valid translation inodel and a si6ehantic transducer similar
Lo the one in [4] is built to align and subsequently 10 infer
correspondences from the training data. In this way, cor-
respondences are oblained consistent with the translation
model..

2. GENERALISED STOCHASTIC
TRANSDUCER

The basic idea is 1o define a simple finite-state transducer
(FST) that can align ony word spelling with the associated

ronunciation. Since there are more than one possible elign-
ment, statistical modelling is introduced to define the best
slignment as the most likely one. The fast implementation
of the Viterbi algorithm determines the ML alignment [5)
and vsing the alignment of the word, we cluster individual
letters and phonemes along the ML path to form letter-
phoneme correspondences according to the four-neighour
cannectivity [5}. The inferred corretpondences are checked
with the existing eet of correspondences. If there is identi-
cal correspondence in the set, the inferred corrsspondence
is discarded; otherwise it is included in the set.

To infer correspondences, the first task is to estimate
the probabilities of GST which may require several passes
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through the training data. After the probabilities are esti-
mated, each word in the training data is aligned by the GST
and correspondences are inferred. When the entire train-
ing dll;lue processed, a 6et of distinct correspondences are
oblained.

~2.1. Definition

A GST is a stochastic version of 2 special Mealy machine
[7] defined 28 a sept-tuple (Q, To,Ep, A a1, go, F\ 1) where
Q = {go) is n set of states, £, is the input alphabet, I, is
the output alphabet, § is the state Lransition function, A is
the input-outputl mapping function, F = {g.] is the set of
acceptor states and r is the set of probabilities. The siate
transition function of GST in defined 2s:

&{go.a) = g

where a € {Z, U {¢]} and the mapping funciion is defined
as:

Meara)= b

where b € {Z, v {t}} given thar Mgo, ) 7# €. Effectively,
we are using a set of correspondences £

{(a,B)|~{a = & = c}}

as the terminals of the phonographic grammar. Building
this set of correspondences on?y need the input and out-
put alphabet which are known in any grapheme-1o-phoneme
conversion whereas phoneme models [8] have 1o be specified
manually.

2.2, Statistical Models

There are three siatistical models that define the probabil
ities of the most likely alignnient. These madels are called
the independent, hidden Markov and Markov models (first
order). The difference between these models is how the
conditional probability:

PIRIRT L RO = (8, 2|6 8,07 ) (1)
in the sentential derivations [3] are simplified to, For the
independent, hidden Markov and Markov model, equation
(1} is reduced 1o the following three equations respectively:

PREIRT LR = (R o (2

ARIRT LR = a8} x ple’lw’™")  (3)

PRIRT LR = pRIRY 1)
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Figure 1: Enumerating all peasible alignments on & wble. Each-

alignment Is & path on the table from }{0,0) to I{lai1+1.|804+1).

For the hidden Markov model, we assume the follow-
ing two conditional independences hold in ozder to simplify
equation {4) to {3):

P8l WISyl ) e (80
P W) = pB 1) X a6 )

We found that the ber of cornr dences inferred
by the GST using the hidden M arkov modd is small
enough for evaluation (i.e. 1082 correspondences) whereas
the other two statistical models infer over 1800 correspon-
dences which cannot be evaluated. Thus, in the following
discussion, we refer to the GST-inferred correspondences as
the set inferred wsing the hidden Markov model.

2.3. Estimating Probabilities

The cenditional probabilities in equation (2,3,4) are esti-
mated from the training data. According o the frequency
interpretation of probabilitics, we can count the number of
times correspondences hsve been ured in the alignments of
all the words in the training data, assuming that all possible
alignments of a word is equally likely. However, the num-
ber of possible alignments of & word N, grows in a faciorial
manner with respect 1o jo;] and |8;|:

18,1

w= 3 (ol ) (#5)

An alternative is to use a 1able to enumerate all the possi-
ble alignments and then count the transitions on the table
(i.e. the probabilities; Figure 1}. The nmnber of updates
N in this case is quadzatic:

No=3x]ail x |8+ 4 x(Ja;] + 15 +5

51ill another technique is to vee dynamic programming 1o
calculate the number of limes a particular position f{z,y)
is visited according to the lollowing recursive equation:

Niz.y)

where N(z,y) is the number of alignments reached J(z, y)
from J{0,0). However, we used the previous method for the
initial estimate of Lhe probabilities which incur less process-
ing time and space than the dynamic programming tech-
nigue.

A better estimate of the prababilities is obtained by re-
estimation [3). However, Luk and Damper [3] showed that

=N{z-1g}+ Niz.p— 1)+ N(z— 1.#-'- 1)
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Figure 2: The ML alignment of the word meke using GST. ]
that when deriving correspandences, transition 3 and transi
4 are combined Lo produce the correspondence (ke, f/f).
bettom right dukgrun shows the schematic representatlon of
ferent types of transitions. Type 1 and type 2 deﬁnﬂ I.mnnl.\
that are connected as defined by the 4-neighd d con
Livity. T_ype 3 transitions represent & break | from the follow
transition in the ML alignment. |

three re-estimation is small and therefore, we limited
number of re-estimation Lo 2 since each re-estimation L
a long time. |

the increase in performance in ML translation after 1.wj

2.4. Decriving correspondences J

The GST can be used direcily to translate word spelli
bat it is used to infer correspondences in ordet to &l
nate null-letter correspondences (¢, #a) and null-phone
correspondences {&y,¢) where 5 is a leiter string and
is a phoneme string. The former increases the comp)
of the Viterbi algorithm and the latter can ¢ause durat
modelling problem [9] when the hidden Markov stati
are used (equation 3).

For each word  in the training data, a table 7{.,.} is
to epumerate all possible alignments of the word spellin
and tie associated phonemic form & {Figore 2). The
alignment is found using the Viterbi algorithm which b
at 7(0,0} and ends at J{|oi]+1, |#:{+1). Each pasition J
represents the state reached from 7(0, 0) which is alway|
since there is only one state in Q. There ate three ty,
state transitions in J(., .) according to &:

Type 1: {(0.3)jn € T, b= tl
Type 2: {{a, b)]n—-cbe..
€E,)

Type 3: {(a,b)}a € T,k

These transitions (Figure 2) can be used to define wh
letters and phonemes in the word i aze linked togethe,
form correspondencen. If the letiers and phanemes are
necied along the ML alignment by type 1 o Lype 2 tr
tions, then they can be grouped to form corresponden
Letters and phonemes are grouped siarling from 7{0,0)
lowing the ML alignment until at J(x,p) where & ty
transition is encountered. At this point, & correspond
is formed and the next correspondence is derived star
from Iz + 1,y + 1).

For example, the word {make,/inelk/) is aligned in |
ure 2. Based on the ML alignimnent, the first corresy
denoe found is (m,/m/). The next correspondence fo
is (a./elf) and the last correspondence is (e, /kf). N
that the word boundary character at the end of the
alignment is not included because a special corresponde
(#. /1) is reserved for it [5).
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Figure 3: Performance of the Lawrence and Kaye, DD inferred
and GST inferred correspond induding the performance of
the GST used directly for translation. Note that vertical axis
scaling are all differen.

3. EVALUATION

We evaluate the GST-inferred correspondences by compar-
ing tleir petformance with the Lawrence and Kaye sel {10)
which are manually derived, the inferred correspandences
using the DD techniques [1] and the GST (section 4.1)
used directly for iranslation. The performance is measured
from 1he training data, unseen words, country names. hibli-
ographical names, forenames and novel words as in [1] (de-
noted 28 A, B, C, D, E and F respectively in the Tables).
Non-parametric siatistical 1ests are applied 1o determine if
there are significant differences in performance between the
different sets of correspondences:

1.1. GST for translation

We make a minor modification of the GST when it is used
1o find the ML 1ranslation: i.c. eliminating null-letier cor-
respondences to simplify the task to find the ML iransla-
tion as in [4] because null-letier correspondences increases
the complexity of the Viterbi algorithm and the number
of words that cannot be translated because of deleting the
null-leiter correspondences is small.

Effectively, the GST uses a set of 1172 correspondences
(section 2.1). Using 26 orthograplic characters and 1%
phenemic symbols (i.e. 44 phonemes and an « character),
1170 correspondences are formed. In addition, two corre-
spondences are added for word boundaries and the twoial
number of correspondences becomes 1172

3.2, Test

Figure 3 shows the alignment and translation perfor-
mance of the Lawrence and Kaye (L+K) set, the DD-
inferred se1, the GST-inferted set and the GST used di-
rectly for translation (section 3.1}, The perfornances were
obtained using the stochastic phonograplic transduction
scheme,
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Tomp 1_ 3 _| Median | Hola > 0.1) |
[G.L | 857 | 0.142 acceph
G-D THa | 4825 Bccept
| H-G 167 | 1.359 Tejech
H-L 12.7 | 1.458 Teject
- 8. 3.630 accept
Table 1: Results of Friedman analysis of differences of aggregate

performance for each word set, If Sc024ata >0 Heis
accepled; otherwise Ho is rejected. Key: Comp is the different
comparison of two sels of cormespondences. G-L is the difference
between the GST and the Lawrence and Kaye set. G-D is the
difference between GST snd the DD-inferved set. H-G is differ-
ences beiween the GST-inferred set and the GST used directly
for translation. H-L is difference between the GST-inferred set
and the Lawrence and Kave set. H-D is the difference between
the GST-inferred set and the DD inferred set.

Tomp | 5 | Median | Holar > 0.1} |
G-L g.20 | 0.836 marginal
G-1) 16.2 4.687 reject

-G 1021 2.309 Teject
H-L | 8,80 | 3.964 Teject

-0} 13.4 T.168 reject

Table 3: Resulta of Friedman analysis of differences for each
performance measure across different word seis. I[ 5 < 6.25 at
a > 0.1, we nccept Ho; otherwise Hy i rejected. For the G-L
case, since S rr 8.25, we accept Ho with reservation.

The GST used directly for translation shows good align-
ment performance across s}l the ward sets. The alignment
performance of the GET-inferred set is cxcellent for train-
ing, unscen and novel words and F. is consistently better
vhan the DD-inferred set (= §%). The alignment petfor-
mance of the L+K set is lower than the GST-inferred set
except for bibliographical names.

Iu genetal, 1he GST-inferred carrespondences yield good
translation performance for training, unseen and novel
words. The mean perceptual error is around 10% and for
novel words, it is as low as 8%. The corresponding word
trapslation acguracy is around 57% for training and unseen
words. For novel words, P is as high as 75%. The G5T
used directly for transiation yield similar performance with
1he L+ set for training, unseen and novel worde.

For country and bibliographical names, the GS5T-inferred
carrespondences and the GST used directly for translation
yield lower performance than the other two sets of cor-
respondences. The difference in Piro) is particularly pro-
nounced for these 1wo word sets {i.e. C and D).

$.2.1. Statistical Tests

Friedman analysis is carried ont il there are any statisti-
cally significant differences in all the performances for ¢ach
word set. Table 1 shows the results of aggregstc differ-
ences in performance for each word set. Only, the difler-
ence in performance between GST-inferred set and GST,
and between GST-inferred set and L+K sel are significant.
Friedman analysis was also carried owt differences {or each
performance measure across all the word sets. All of the
comparisons are significant except the GST vetsus L+K set
which is only marginal.

The Wilcoxon signed ranks test was used to determine
individual differences in all the performances of two sets of
correspondences (i.e. H-G and H-L in this case) for each
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[Word Set | Comp [ WF | Median | Hole > 0.1) |
A : H-G 10 1.90 marginal
) B-G 10 3.51 marginal
C H-G [] ~1.08 accept
i H-la J -1.66 uccept
E H-G 3 0.48 accept
L H-a 5.5 2.54 accept
A H-L 10 4.01 marginal
:j —H-LT] 10 3.0 marginal
[ — H-L B 1.68 accept

AL T -3.83 accept
£ H-L 10, 1.88 marginal
F H-L ] 4.18 accept

Table 3: Results of using Wilcoxon signed ranks test to determine
whether there are significant differences in all the performance
mensares of 1wo sets of correspondences for each word set. The
Wilcoxon statistics are found only for H-G and H-L becawe H,
is nccepted for the other comparisons {1able 1). If W+ < 11 a1
o > 0.1, we accept Hg: atherwise H, is rejected.

word set (table 3). In general, the GST-inferred corre-
spondences were better (= 3.5% to 4%) than the GST
used for translation and the L4 K set in P, and P, only
marginally significantly. In addition, the GST-inferred
correspondences vield marginally better Py, performance
(= 1.88%) than the L+ ser.

The Wilcoxon iest was also applied 1o determine if there
are significant differences in each performance measnre
across all the word set between two sets of correspondences
(table 4). In general, there are no significant differences in
Fpay and P,y between any comparisons Comp although
the correspondences inferred using GST is marginally bet.
ter than the GST used direcily for translation with a higher
median P,y of 1.46%. The GST-inferred correspondences
and the GS’IJ used for translation ave better aligniment per-
formance than L+K and the DD-inferred corretpondences.
In terms of word iranglation aceuraey, the GST-inferred
correspondences vield better performance than the L+K
set {i.e. T%) and the GST used for translation {i.e. 5.4%)
which in turn is betier than the DD-inferred sel.

4. CONCLUSION

An algorithm that infers correspondences using o gener-
alised slochastic transducer is deacribed. The inference pro-
€ess is consistent with stochastic phanographic transduction
and correspondences are obtained on the basis of reduc-
ing translation complexity and the reduction of duration-
maodelling problem. The inferred correspondences have high
slignment and translation perfortance for training, unseen
and novel words. For t7aining and uneeen word, the mean
perceptual error is moderately lower {i.e. = 2%} than the
conpectionist model for British RP [11.12). For novel words,
the mean percepiual error is as low as 8% and the corre-
sponding word translation accuracy is 75%. However, for
proper names, the G5T-inferred correspondence has slightly
lower alignment and translation performance than others.
The inferred correspondences yield better word translation
accuracy than the GST used directly for translation.
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