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ABSTRACT

The Fermat number transform (M) is one of the most useful number theoretic

transforms. This paper investigates its application to the calculation of
convolutions and correlations with emphasis on the transform length
constraints. A technique is introduced to increase the sequence length that
may be convolved through an FNT of specified size while preserving other
advantages.

1. INTRODUCTION

If an input data sequence is denoted by x(n), the time domain response of

filtering this sequence with an impulse response h(n) is the linear
convolution yL(n) :

N-l

yL(n) - m(m)h(n-m) (1)
m-O

Which is usually abbreviated as:

yL(n) - x(n)*h(n) (2)
Similarly, correlating two sequences x(n) and h(n) yields

N-l
y(n)- Zx(m)h(n+m)

m-O (3)

It can be seen that, in both the convolution and correlation, the calculation
of an output point depends on many input samples. The time domain or direct
calculation is computationally expensive.

An alternative technique for calculating convolutions and correlations uses
orthogonal transforms having the cyclic convolution property (CCP), where the
multiplication of the transforms of two N-point sequences corresponds to the
transform of their cyclic convolution [1,2].

The use of thediscrete transforms to compute convolution and correlation is
aimed at the reduction in the number of arithmetic operations needed. Using
the fast Fourier transform (FIT) to rapidly calculate the (Di-'1'), made this a
most practical method. The advantage of this (block processing) over the
direct method increases with block size N. However, the computationally
efficient FFT method still involves significant round off error, and requires
the storage or generation of the sine and cosine functions which will be
rounded. This motivated the study of other transforms which retain the (CCP),
while reducing rounding errors and computational load.  Proc‘I.O.A. Vol 13 Part 9 (1991) 76
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The cyclic convolution property. known in the complex field for the (DFT), has
been extended to other families of transforms defined in finite fields and
known as number theoretic transforms (NTTs). Early references to the subject

are Knuth [7]. Good [8], Pollard [9] and Rader [10,11]. Agarwal and Burrus
studied these transforms and their application to digital signal processing
[12,13].

This work revealed that, in finite fields there is a whole family of
transforms each with properties depending on the chosen modulus and kernel.
VLSI designs for FNT transformers have been developed [17],[18]. In this
paper, the problem of calculating the convolution is investigated when a
transform length is needed which is longer than that available from existing
VLSI designs or software. A technique is presented allowing the calculation of
convolutions and correlations for data sequences of length greater than N when
the available VLSI design will accommodate only length N.

2. DEFININTION OF NTTs

Let F be any prime or composite number (the product of mutual primes) and a be
a primitive root of order N, then a NTT in this ring is defined as:

N-l '
xm- Ex(n)ank

n—O
k-0,1,2,....N-l

where N is the transform length and
a“ - 1 Mod F and up - l for 0 < p < N

mod F (5)

If N and F have no common factor then N'1 exists and by analogy to the DFT
an inverse can be defined

N-l
x(n)- N'1 zxacwm‘ Mod r (6)

k-O -
nT0.1,2....,N-l

where N' is the inverse of N mod F

Since a is a primitive root of order N, the exponents of o are calculated
modulo N. Replacing n by -n, Eq.6 and Eq.5 become similar except for a scale
factor N. This means that the inverse transform can be calculated by time
reversing the input and applying the same forward transform, so simplifying
implementation.
The NTTs in general have the cyclic convolution property and can be used to
calculate the convolutions by the same method as the DFT. The NTTs have some
advantages over the FFT:

1 -NTTs do not need any manipulation of the trigonometric functions (sine and
cosine);

2 They are calculated modulo aninteger and hence they are error free making
exact results possible;

~ 3— Multiplication free transforms can be achieved through an appropriat
choice of the transform parameters. ‘
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3. NUMBER THEORETIC TRANSFORMS AND THE TRANSFORM LENGTH

For NT'I‘s a rigid relationship exists between the modulus, the transform length
and the kernel chosen. For binary processors, especially those using
application specific circuits (ASICs) to accommodate the required number of
hits, the Fermat numbers F3-F6 are good choices for defining NTTs (F5,F6 are

not primes). From [12] , the maximum length for a multiplication free transform
for a-./2 is 256 . This is well suitedfor moderate length convolutions and
image filtering.

A problem, however, arises when a longer transform length is needed. This can
happen in one dimensional processing where the sequences to be processed are
naturally long. '
Agarwall and Burrus [14] used the scheme proposed by Rader [15] of mapping one
dimensional convolution to two dimensions. With this scheme the sequence
length which could be filtered via the multiplierless FN’l‘s is proportional to
the square of the word length . Other authors proposed the use of mixed radix
NTTs with 2 as a root of unity and composite transform lengths at the expense
of using moduli with more complex arithmetic [16} .

Another simple solution is the use of akernel which is different from 2, for
example a-3. Using this as the basis function all the transform lengths up to
the modulus (for prime numbers) are possible and the transform length problem

‘ is considerably alleviated. Values of N up to 65536 are possible with o-3;
this requires the use of multiplication. Compared with the EFT, the FNT
provides a simpler butterfly structure involvingone single integer multiplier
per butterfly against four realmultipliers for the FFT.

4. THE RELATIONSHIP BETWEEN THE LINEAR AND CIRCULAR CONVOLUTIONS:

Let the third Fermet number F3 be the modulus, N-32 and a-./2; (however, the
explanation applies for all NTTs). For this choice of a, and modulus, the
NTTs are:

31
xm - z x(n)./2nk Mod r3 . (7)

n-O
k-0,1,2....,31

Where r3 - 28 + 1 - 257;
and the inverse

31
x(-n)- _; rxmjznk Mod F3 (8)

32 k-O
n-O,1,...31

The 1-D convolution operation using MS as, illustrated in Fig.1, is given
by:

yc(n) - INENT(FNT[x(n)] x m[h(n)]) (9)
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Where x is point by point multiplication and yc(n) is equivalent to:
— . N~l

yc(n)- 2 x(m)h(<n-m>N) (10)
m-O

< >N means the indices are calculated modulo N. This results in a circular
convolution with the same length as the convolved sequence. This is usually
written as:- '

)'¢(n)-X(n)xh(n) (11)

In many digital signal processing problems the desired convolution is linear
(Eq.l) rather than circular.The direct application of any transform, to the

calculation of the convolution function of discrete data leads to a circular
convolution which is different from the desired linear convolution leading to
erroneous results. This is inherent in the operation of transform algorithms
which assume that the function being transformed is periodic, and hence the
resulting N point transform is also periodic.In order to bring the efficiency
of fast transforms to the calculation of aperiodic convolutions, a

relationship is needed between these convolutions . A well known method is to
increase the size ofthe transformed sequences by including sufficient zero
values to prevent the individual periods of the convolution from overlapping.
The difference between a circular and a linear convolution is shown in figure
2.

The linear convolution of a sequence of length M1 and a filter of filter
length L is an (M-M1+L-1) point linear convolution, is shown in figure 2a (for
Lpfll-N). A circular convolution figure 2b can be equivalent to a linear one,
only if the sequences M1 and L are sufficiently paddedwith zero values so
that the calculation of a linear convolution is completed before any value of
the circular convolution begins to wrap around. This is the case if the
period of the circular convolution is at least equal to the linear convolution
length:-

N z M1+L-l (12)

Therefore, the two sequences should be padded with zeros to give an extended
form as follows:-

x(n) for n-0,1,2,...,M-1

Mn)-
0 for M 5 n 5 N-l

and

h(n) for n-0,1,2,...,L-1
h(n) - O for L 5 n s N-l

Convolving these sequences using NTTs will lead to the desired linear
convolution.
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5. CALCUIATION OF LINEAR CONVOLUTION USING SHORTER CIRCULAR CONVOLUTION

The cross-over point where the efficiency of frequency domain calculation
exceeds that of the time domain calculation depends on the problem, the
transform and the hardware available. However, a common criterion is that
transform algorithms are more efficient for large filter lengths than for
short ones [2.3].

When the multiplierless FN‘i‘s are applied, however, only short or medium data
sequence lengths are accommodated with currently designed hardware.
Therefore, methods which extend the sequences being convolved through FNTs of
a given length, while maintaining the other advantages, are of interest. Some
of these methods such as the use ofmultidimensional mapping and higher order
roots have already been introduced [14] .

In this section a method is introduced that calculates a linear convolution
using circular convolution of the same or shorter length than the sequences
being convolved, allowing the increase of multiplication free FNT lengths.

Usually, the linear convolution of length (N +N2-1) is calculated through a
circular convolution of length (M 2 N1+N2-1 . A method that calculates the
linear convolution using a shorter circular one has been formulated and is
outlined below.

Consider as an example the calculation of the linear convolution yL(n) of two
arbitrary sequences x(n) and h(n) given by: v

x(n)-23415A321h5543
21

h(n)-12462000123321
4 5

Calculating by means of FNTs after sufficiently padding both sequences by zero
values, the linear convolution is given by:

yL(n) - 2 7 18 33 45 AB 1.5 56 53 1.7
51 65 92 106 112 111» 104 80 67 80
77 73 63 62 70 64 51 36 24 14
5 0 '

Their circular convolution when calculated using a circular convolver program
of length 16 is found to be:

yc(n): 106 87 85 113 122 .121 108 118 123. 111 102
101 116 120 117 llh

Examining this example and figure 2. it can be seen that the circular
convolution can be obtained from the linear one by taking the set of samples
which pass the maximum shift allowable (the circular convolver length) and
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adding them to the first part. point to point. These parts, for this

particular example , are given by:

yL(n) - 2 7 18 33 45 1:8 b5 56

v 53 A7 51 65 92 106 112 11k
and

yL(N+n)—IOI¢ 80 67 80 77 73 63 62
70 6h 51 36 24 14 5

It is clear that adding these sequences gives yc(n).
Hence yc(n) - yL(n) + yL(N+n) (13)

n-0,1. . . . .N-l

This equation answers the question how a circular convolution of two sequences
can be calculated from their linear counterpart.
This can also be proved by writing the FNT of the linear convolution yL:

2N~1
YL(k) - z yL(n)ank Mod Ft (1A)

n—O

N-l N-l
YL(k) - z yL(n)ank + am‘ 2: yL(n)ank Mod ft (15)

n-0 n-0

The transformed circular convolution is obtained from YL(k) by taking:

a“ -1 Mod Ft (16)

The effect of taking a" - 1 in Eq.15 results in adding the samples which are
beyond N and the first samples of the linear convolution to yield the circular‘
one .

Equation 1A can be written in more general form as

N-l N -1
YL(k) - z y(monk + ank 21yL(n+N)onk Mod 1': (17)

n-8 n—0
For N1 < N

These results can now be used to show how a linear convolution of length
greater than N can be calculated using a circular convolution of length N.

First the circular convolution is divided into its first and second parts
311cm) and y2c(n) respectively.
w ere:

‘ n N/2-l , (18)
and yzc - ye for N/Z 5 -1 (19)
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Let N1 - N (Results have also been derived for N1 = N/Z).

Substituting £41.18 and Eq.19 into Eq.13_gives:

y1c(n) - yL(n) + yL(N+n) for 0 s n 5 N/2-1 (20)

y2c(n) - yL(n) + yL(N+n) for N/2 5 n 5 N-l (21)

Eq.20 and Eq.21 relate the cirCular and linear convolutions. If the linear
convolution is known, the circular one can be obtained. Otherwise. if the J

circular is known and the yL(n) is known for:

0 S n 5 N/Z-l (22) ‘
and '

3N/2 S n s 2N-1 (23)

the other parts of the linear convolution can be obtained. ‘

These intervals present the linear convolution over the first and the last N/2
points and can be deduced from the partial linear convolutions x1*h1 and x2*h2
where: '

x1(n) - x(n) for O 5 n 5 N/2-1 (24)
0 Otherwise

and

0 for 0 g n 5 N/Z-l

x2(n)- (25)
x(n) for N/2 _<_ n 5 N-l

The same is done for h(n):

h(n) 05 n 5 N/2-l
h1(n) — (26)

0 Otherwise

0 Otherwise

h2(n) — (27)
h(n) for N/2 5 n 5 N-l

Now calculate the linear convolution of x1(n), x2(n) with h1(n) and h2(n)

respectively. ’

yum) - x101) * h (n) (28)
yum) - x201) -* him) (29)

Writing the equations of y1L(n) and y2L(n) and comparing them with Eq.1 leads
to: '

31L“) -yL(n)
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for O s n 5 N/2-1 for 05 n 5 N/2-l (30)

YZLCD) $11“)

for N/Z 5 n 5 N-l for 3N/2 s n s 2N-l (31)

Using these equations, with Eq.l8 and Eq.19, the linear convolution can be

deduced as: '

yum) for 05' n s N/2-l
0 s m s N/2-1
yz (MN/2) - ygL(m+N/2) for N/2 s n s N-l
m-8.l,2....,N/ -1 .

yL(n)- (31)
(m) - yuan) for N 5 n _<_ 3N/2y

m33,1,2....,N/2-1

yz (m+N/2) for 3N/2 5 n s 2N-1

m-B.l.2....,N/2-l

Thus, (ZN-l) points linear convolution can be carried out using three N point
circular convolutions and N additions as shown in figure 3.

6. CONCLUSION

A method is introduced that calculates a linear convolution using a circular
convolution of a relatively shorter length and if used in conjunction with the
FNTs allows the doubling of the linear convolution length that can be
calculated using the multiplication free FNT transforms. This method is also
compared with the conventional method and found to be more efficient in terms
of speed and memory requirement.
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