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Experimental techniques for nondestructive testisghg nonlinear ultrasound stimulate the
theoretical interest in wave propagation in mater@@ntaining crack-type defects (i.e. internal
contacts). The presence of cracks invokes two map@chanisms of nonlinearity: an
asymmetric reaction of the crack to normal compoegtension, and friction-induced hysteresis
activated by shearing action. The generated nanliresponse of a sample highly depends on
its geometry, for which a numerical descriptiommsst suitable. Our numerical tool consists of
two components: a unit for solving the elasticifguations in the bulk volume and a unit that
provides appropriate boundary conditions to be apoat the internal boundaries in the
material. The crack model has to provide load-dispient relationships for any value of the
drive parameters. The traditional Coulomb frictiamv written for loads does not have this
property, and therefore we use another conceptish&iowever, based on Coulomb’s friction
law as well. The approach includes the accountdaghness of the defect faces which results
in the appearance of an additional contact regifygadial slip, when some parts of the contact
zone slip and some do not. This situation is sigfag dealt with by using the previously
developed method of memory diagrams. In this mettibd hysteretic load-displacement
solution is constructed with the help of an intérsgstem function (memory diagram) that
contains all memory information. This displacemeriten solution can be easily extended to
two other contact regimes (contact loss and tditihg) and is finally computed for any normal
and tangential displacement histories. Memory diagr have to be maintained at each
discretization point on the crack surface and wgl&vllowing the applied displacement fields.
The load-displacement data provides input to thid smechanics unit programmed in
COMSOL®. We present an exemplar simulated configumaand discuss the results.
Keywords: contact acoustical nonlinearity, crédktion, crack-wave interaction

1. Introduction

Planar defects in solids generate a strong nonliresgponse once activated by the action of an
elastic wave or vibrational stresses. Contact nealiity is usually much stronger than other types
of acoustic nonlinearity such as material or geoimetnes. This fact underlies at least two
applications: nonlinear acoustic nondestructivetings(NDT) and creation of new nonlinear
materials with unusual properties (metamateridis)the former case, internal contacts act as
secondary nonlinear sources in a material thusvaitpone to detect their presence and than make
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a conclusion about the health or serviceabilitythed structure under study. In the former case,

strong nonlinearity is combined with the effect iofernal resonances in a sample eventually

generating rich effects that can be potentiallydus® enhancing properties of existing linear
metamaterials. These applications stimulate therest to modelling for elastic and related
phenomena in materials containing internal contaldie development of a proper numerical tool
offers a possibility to estimate sizes of defegtebmparison measured and synthetic responses and
therefore build up a complete NDT strategy. Fordieation of metamaterials, numerical modelling
represents a principal instrument that allows anegtimise the geometry of a prototype material
before performing actual experiments.

Modelling for elastic behaviour of materials withternal contacts is possible via at least four
existing approaches:

1. Homogenisation techniques [1] that aim to exprbasseffective material properties through the
parameters of inclusions or cracks. It is suppdbetl the material contains a large number of
cracks with certain orientation distribution whilkee actual position of detects are not important.

2. Numerical methods that use phenomenological comactels such as frictionless contacts with
different stiffness for normal compression and i@m$2], Preisach model [3] for hysteresis, etc.

3. Methods of numerical contact mechanics [4] withesaded meshing of the contact zone and
arbitrary contact configurations in 3D, taking irgocount a variety of movement types, contact
interaction laws including dynamic friction, etc.

4. Multi-scale numerical approach based on finite e@etror boundary element modelling in the
presence of frictional contacts considered as ntegds elements whose reaction is obtained as
a solution of an auxiliary contact problem.

The method proposed here belongs to the formerpgrobe actual locations of defects are
considered as known, in contrast to the homogears&chniques that use statistical approaches.
The advantage with respect to purely phenomendabgiethods is that our modelling is based on
physics of normal and tangential contact interastiinstead of artificial assumptions. Finally,
complete contact mechanical modelling in which dniteary contact zone is mashed with finite
elements is too detailed and cumbersome for a@alsdpplications when a signal can contain
millions oscillations per second. To avoid thafidiflty, our approach includes the consideration of
a mesoscopic cell in which a problem of frictioshlft between two bodies having certain contact
topography is solved. The obtained relationshipyvbeh vector contact load and displacement
represents a boundary condition posed at the @mtboundary corresponding to the contact.

2. Assumptions and simplifications

The developed code allows one to calculate alltieléiglds including the nonlinear terms in a
sample of known geometry with cracks of known cgmfation. The numerical tool consists of two
components: a solid mechanics module programme@Dnusing an available finite element
software (COMSOL) and an external contact modedgrdted into the solid mechanics unit. Our
contact mechanical approach has the following ¢sddeatures:

. the considered contact interactions model includietion and is based on the Coulomb
friction law;

. the internal contacts/cracks surfaces have a naadttopography (e.g. roughness);

. the normal load-displacement dependency for rougfases requires some information on
roughness statistics; otherwise it can be meadliredtly for an engineered contact;

. the tangential interactions appear during shiffjnmg and torsion as movement types are not
considered;

. plasticity and adhesion are neglected,;

. the model is quasi-static i.e. frictional dynamettects are not ignored.

2 ICSV24, London, 23-27 July 2017



ICSV24, London, 23-27 July 2017

. the contact load-displacement solution is obtaimed the Method of Memory Diagrams
(MMD) [5] that uses the assumptions of the reduekegtic friction principle [6] also called
Ciavarella-Jager theorem [7].

The former two features are importantly linked txle other. The matter is that the Coulomb
friction law for plane surfaces does not providead-displacement relationship in an explicit form.
Indeed, Coulomb friction law just defines in whistate - contact loss, stick, or sliding - the syste
evolves at some given stress values. The calcolafidisplacement is only possible via an implicit
procedure that redistributes strains and stresséBei whole sample trying to match the sliding
condition (shear stress equals normal stress timeson coefficient). In the next section we
explain how the introduction of surface relief sashrandom roughness helps avoid this difficulty.
Some comments on the MMD are also given.

3. Contact model

3.1 Mesoscopic scale

Our approach to calculation of the desired phybmsed load-displacement relationships
requires the introduction of an intermediate scalan other words, of a mesoscopic cell. On one
hand, the size of a cell is considerably less thath the crack size and the wavelength so that the
macroscopic elastic fields calculated by the solgthanics unit are approximately uniform within
each cell. On the other hand, the cell size is myelater than the scale of roughness or other
microscopic features (e.g. in the case when thernat contacts are not defects but structure
elements having certain profile). The concept efrtiesoscopic cell is illustrated in Fig. 1. Its éw
part shows the geometry the auxiliary problem tesbleed for determining the load-displacement
relationship. With the notations introduced in Fily.the link between loads (contact forces per uni
nominal contact surfac®) andT and displacementsandb should be determined.

Figure 1: Auxiliary contact problem at the mesoscagale: a link between loads (contact forcesupér
nominal contact surfac®) andT, and displacementsandb should be determined.

3.2 Partial slip regime

The presence of surface relief (e.g. roughnesshesfwt the contact system can evolve in one
of three regimes: contact losBIHT=0), partial slip (T|<tN), and total sliding T||=tN). In the
regime of partial slip, some contact points atdpposite faces of the crack slide and some do not.
This regime does not exist in the case of perfemtipoth surfaces in which the conditidf<pN
actually corresponds to the state of stick in ataonce to the Coulomb friction law. The partial slip
regime was firstly discovered for contact of twdepes [8] (Hertz-Minldin or Cattaneo-Mindlin
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system) and is also observed for other non-plameacb geometries. In this regime, according to
the reduced elastic friction principle [6] (calletso Ciavarella-Jager theorem [7]), the tangential
reaction of a contact system loaded by constarefoor displacements can be expressed through

its normal reaction curvid(a) in the following way:
b=6u(a-a)
- 1)
T=4u(N(a)- N(a=a))
This solution is valid [6] for axisymmetric profgewith
2-v
) 2
2(1-v) @)

as well as for a variety of other geometries [7¢luding rough surfaces [9]. For non-
axisymmetric geometries, values ®tan differ from Eq. (2). It is straightforward tewrite Eq. (1)

as
b=6u[ D(n)dy
’ (3)

F dN
T :,uj D(U)E

0

dn

a=n

where functiorD(#) is introduced as shown in Fig. 2(b).
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Figure 2: lllustration for loading histories ((a)ca(c)) and memory diagrams ((b) and (d)).

"Q

The MMD [5] is a method that allows one to calcel#étte solution in the form of Eq. (3) not
only for constant loading (Fig. 2.(a)) but also @or arbitrary loading history (Fig. 2 (c)). In the
general case of arbitrary loading, functio(vy) called memory function or memory diagram has a
more complex form (Fig. 2(d)) in comparison to gmple rectangular one depicted in Fig. 2(b).
The memory diagram evolves in accordance to a numberescribed rules following from the
Coulomb friction law written for microscopic contetress and displacement fields and can consist
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of straight horizontal and curvilinear sections. [[B] particular, due to the Coulomb friction laveth
absolute valugD (77)| can not exceed 1, etc.

The MMD requires the knowledge of the normal contaactionN=N(a) for the system under
study. There exist theoretical [5] and experimerjid] arguments supporting the quadratic
approximation folN(a),

N(a)=3C'd, (4)

with C=6010°Pa"?m* obtained by an indirect ultrasound-based estimafit0] for two
aluminium blocks with rough surfaces. In our model] we use this value as an example. The
approximation Eq. (4) only works for smallwhich corresponds to weak acoustic strains.

The MMD offers a possibility of calculating the tmmtial reaction curve

T=T[a(t),b(t)]= MMD( b as a function of input parameters histories (inaase, displacement

historiesa(t) andb(t)). This solution is only valid in the partial slipgime defined by the condition
[T|<uN or |b|<fua. Indeed, the second Eq. (3) reflects the forcarza principle which means

that the external tangential force is equilibrabgdthe shear stress distribution in the contacezon
When the external tangential force exceeds thet lifNj the force balance considerations do not
apply anymore. For the traditional representatiba orack as a slit with perfectly plane surfaces
this becomes a serious difficulty since the tanigéniisplacemenb remains undetermined in the
framework of the Coulomb friction law in the cadetatal sliding. The difficulty can be overcame
by accepting an additional assumption [11] linkimgvith known parameters or by applying an
iterative procedure that recalculates all stresssdrain fields for a guessédn order to satisfy the

condition|T| = uN. The latter can be problematic as such a situa@i@onoccur in many mesoscopic

cells at the same time. Matching tangential dispiaents an points to simultaneously satisfy
conditions represent a cumbersome task. Modernrigefimgte element modelling software such as
COMSOL does not provide this possibility [12]. Hoxee, following our approach, this difficulty
can be avoided.

3.3 Load-displacement relationship

In order to obtain the solution to the mesoscopintact problem and derive the load-
displacement relationship in all three regimes fioe.an arbitrary combination of displacements
together with their histories, the following techue is suitable. The tangential displacement should
be presented as a sum of two components,

b=k, +b, (5)

where by corresponds to the displacement achieved in tke #diding regime, and is a
component that reflects partial slip and the apitif asperities to recede under tangential load.
Equation (5) allows one to write down the solutiémrseach contact regime:

. Contact loss that occurs whes 0. Since no contact interaction is presedT=0, and
asperities remain unstrained ie=0. Correspondinglyl, =b in this case. The memory
function equals 0 everywhere for<@ < N (Fig. 3(a)).

. Partial slip that takes place whare 0, ‘6‘ <@ua. In accordance to the MMD applicable in

this situation,T = MMD(B) while the total sliding contributioby remains unchanged. The
memory diagram has a certain form depending oningduaistory (Fig. 3(b)).
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. Total sliding that happens whex0 and the memory function equals +1 or -1 on theles
interval 0<77< N (Fig. 3(c)). According to Eq. (39 = +4ua where the sign depends on the
direction of sliding. The asperities recede undergential loading, so that the actual full
sliding contribution should account for this effelf = b—b.

1{ D(7) (@) . D(77) (b) 4100 ©)

7 n n
a " a a
1

Figure 3: Memory diagrams corresponding to corltzd (a), partial slip (b), and total sliding (c).

Figure 4 illustrates an example of the tangentiadtdisplacement curve (b) calculated for
displacements histories (a) containing a dozensoillations for imitating a fragment of a typical
acoustic signal.

normal displacement a tangential force b
0 @ ; - (b)
2 3 - )
0 - o 4 total diding
contact loss
2 - -3
tangential J tangential
displacement b time (a.u.) displacement b
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Figure 4: Tangential load-displacement relationgh)pcalculated using our contact model for an g¥dam
displacements history (a).

4. Finite element modelling results

The presented contact model has been used asenax}ioundary condition that is to be set at
the boundary corresponding to the internal contagth a possibility is offered by the "thin elastic
layer" feature available in the solid mechanics atedf COMSOL Multiphysics.Figure 5 illustrates
a simulation example for a test sample (aluminiulock) with an inclined crack of known
geometry. The geometry has been automatically ndesitb a variable mesh size which drastically
decreases in the vicinity of the crack. The normeaktion curve was taken from literature [10] on
ultrasonic assessment of properties of contact dmtwwo aluminium samples. Finally, the two
pictures at the right of Fig. 5 present snapshbéthe simulated wave propagation pattern at two
different moments of time.

Nonlinear analysis [13] of the wave propagationugation results provides nonlinear signatures
of damage and finally an opportunity of using thetimod in nonlinear nondestructive testing.
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Shear wave excitation:
5 cycle sinewave burst at 100 kHz

Time=8E-6 s Time=4.1E-5 s Surface: Total displacement (m)
0.05 0.05

0.04 1 0.04 1

0,031 0,031
0.02 - 0.02 -
001

0

S
S

1
Aluminum sample SR
\ 50 mm -0.02 0 0.02
Low reflecting Crack of finite extent
boundaries

(modeled as a thin elastic layer)

Figure 5: Simulation for a wave propagation in Amranium sample containing an inclined crack. The
considered geometry (original and meshed) is sheswnell as two snapshots of the simulated wave
propagation pattern.

5. Conclusions

This paper contains a description of a numerical tweated for modelling wave propagation
and vibrations in materials containing internattional contacts (cracks, delaminations, etc). The
theoretical analysis includes elaboration of a @cinmodel that takes into account non-trivial (non-
plane) geometry of internal contacts, in particulaough surfaces. For non-plane contact
topographies, there exists a contact regime caltial slip when some points of the contact area
slide and some do not. The partial slip regiméésdase when our previously developed method of
memory diagrams applies. The method allows onet@gangential load-displacement relationship
for any loading history and represents a moderrersion of the Hertz-Mindlin solution [8]
applicable to a wide range of contact geometriég. Aysteretic tangential reaction is obtained in an
automated way using and internal memory functioenfory diagram) that evolves according to
the prescribed rules. In two other regimes - cdntass and total sliding - the exact solution can
also be obtained.

The numerical tool can be applied as modelling supfor modern nonlinear acoustic NDT
methods. Upon the experimental validation, the bigeal tool is to be used for comparison of data
and modelling results and for estimation of geoioafrparameters of damage. Its application
actually completes an NDT algorithm that startshwibnlinear acoustic measurements and finally
results in the estimation of the damage "degregrabity" and in possible predictions for the
lifetime of the sample. Generally, numerical modell considerably increases the visibility and
"transparency" of all physical processes used &onabe detection.

The presented method is capable of accounting migtfor rough surfaces but other (regular)
contact topographies. Combining nonlinear wave ggagion with the use of internal resonances in
periodic structures offers an opportunity to use thethod for designing nonlinear acoustic
metamaterials based on contact nonlinearity.
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