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1 Introduction

It has been demonstrated throughout the literature that there are recognition gains to be had by clus-
tering available training data according to speaker sex, channel, noise conditions or speaking rate.
Essentially, these results demonstrate that models conditioned according to categories of variability

are more effective than unconditioned models. Recently, there have been a number of papers ex-
tending this concept in systematic ways. Padmanabhan et al.move from two gender clusters to many
speaker clusters in 1996 [1]. In 1998, Kuhn et al. introduced eigenvoices, a method that provides
both a novel mechanism of clustering and an efficient adaptation [2).

Both of these works promise rapid adaptation due to the conditioning of the pre-trained cluster mod—
els. Looking at the matter another way, the adaptation mechanism has been partially effected in the
training procedure. Given that training corpora are continually expanding, it makes sense to. exploit
their richness as much as possible. Byproviding tor macro-adaptation in this manner, the on-line
adaptation procedure now reduces to micro-adaptation. As a result, it now requires much less adap-
tation data to achieve successfully adapted models.

We propose an eigenvoice-like architecture in which adapted models are constructed as a linear
combination of pre-trained cluster models, deviating from the eigenvoice approach in four important
ways:

1. phonetic class-based cluster models,

2. data-driven cluster model definition,

3. non-linear programming for cluster coefficient calculation, &

4. cluster coefficient export to high-definition models.

Recently, eigenvoices and speaker clustering have taken turns toward class-dependent modeling.
Kenny, Boulianne and Dumouchel consider cluster modeling at the Gaussian level [3]. Jiang and
Huang observe gains by adding subword dependence to speaker clustering [4]. Considering that the
modeling-unit dependence of traditional adaptation methods has been considered in great detail, this
research trajectory is not surprising. Unfortunately, the smaller the granularity of unit-dependence.
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the higher the parametric complexity of the adaptation mechanism will be. In consequence, the
adaptation time is once again increased.

Given that the trend is toward clusters over phonetically-derived classes, it is clear that the value of
' speaker conditioning is somewhat lost. In effect, we cannot expect a single construction of training

' speakers to match a test speaker for every phonetic class. As a result, we consider the case of data-
driven clustering over such classes, hoping to capture all variabilities within a consistent mechanism.
That is, inter-speaker variability, intra—speaker variability, channel variability and noise variability are
all handled without bias in the clustering process.

In the matter of cluster coefficient estimation, we follow Huo and Ma who constrain cluster coefficients
so that the resulting adaptation models are sure to lie inside the simplex defined by the cluster
models [5]. We have found that unconstrained projection methods result in far too many inappropriate
adaptations.

Finally, cluster coefficients are estimated in the domain of simple models but applied in the domain of
complex models. In this manner, the coefficients can be estimated smoothly and efficiently while the
resulting models can be at the state of the art. By applying adaptation independently to all units in
all rescoring hypotheses, the proposed method gives significant same-syllable recognition gains on
a difficult wireless pseudo-isolated digit task.

In the following section, a brief literature review is undertaken. Subsequent sections will outline the
present strategy for extending eigenvoices with. data—driven clustering and class-based coefficient
estimation. A simple experiment is then reported on which the concepts outlined here are shown to
be effective. Finally, the work is discussed and conclusions are made.

2 Previous work

In this section, three research efforts are compared. Presented in chronological order, we consider
speaker clustering [1], eigenvoices [2] and adaptive prior fusion [5]. Each of these strategies main-
tains training-data clusters on the basis of speaker. That is, the critical source of variability in each
case is considered to be due to inter-speaker differences.

2.1 Speaker Clustering [1]

The following Figure stylizes (for presentational purposes) the speaker clustering methodology of
Padmanabhan et al [1]. Offline, many models {m1m2‘-'mM} are trained on speech data from M
training speakers. In effect, each speaker's speech data represents a separate data cluster (DC).

Adaptation data is used first to identify N < M training speakers that will be considered “similar' to
the source of the adaptation data. Then, an adapted model b is derived using the adaptation data
from those N similar speaker models using MLLR techniques.
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Figure 1: Stylized Speaker Clustering

This approach leads to significantly improved adaptation over an MLLFt baseline. Unfortunately,
gains were not reported as a lunction of adaptation time, as it is likely that the speed of adaptation
was enhanced by this approach considerably.

One of the significant drawbacks cl the technique is the fact that each of the speaker models must be
used to decode the adaptation data, resulting in a computationally intensive adaptation phase. This
ditliculty is largely eliminated in the strategies considered below. '

2.2 Eigenvolces [2]

The eigenvoioe approach due to Kuhn et al. provides an optimal compression of M single-speaker
models into L “eigenvoices” that span the most significant dimensions of speaker space [2]. The key
to the eigenvoice development is the appreciation that any amount of speech can be considered to
reside in the space of "super-vectors" consisting of HMM parameters. While it is possible to make
use of any and all such parameters. it is typical to take only themeans of the Gaussians by which
the HMM observation pdfs are parameterized. ll HMM parameters are re-estimated over as little as
a single utterance. that utterance is implicitly represented in the appropriate phonetic subspace. As
a result, a single utterance (adaptation or testing) can be compared directly to pre-trained models.

0n the basis of super-vector mathematics, the relatively costly MLLR adaptation can be replaced with
the very efficient MLED projection mechanism. A considerable reduction in the parametric complexity
ol the adaptation itself results. Indeed, only the vector c = {0162 - - - BL} is estimated. Because very
lew parameters need to be estimated, very little adaptation data is now necessary. Figure 2 sketches
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the eigenvoice strategy.   Adaptation Data

Figure 2: Eigenvoice Architecture

Here, the single-speaker models as used in speaker clustering (represented by their super-vectors
s... m e {1, 2, - ~ - ., M}) are replaced by eigenvoices (represented by ml I 6 {1,2,- ~,L}) determined

" via’a dimensionality reducing mechanism such as Principal Component Analysis (PCA). In effect,
only the most significant L < M dimensions of the speaker variability are retained.

While the strengths of the eigenvoice strategy are considerable, one of its inherent weaknesses is the
fact that reliable estimation of the cluster coefficients depends, to some degree, on the smoothness
of the eigenvoices themselves. Indeed, the examples demonstrating both eigenvoices and speaker
clustering use single-Gaussian pdf parametrizations [1, 2, 6]. Clearly this represents a drawback if
the final adapted model b is derived directly irom the relatively simplistic cluster models nu. In the
sequel, an architecture that solves this difficulty will be presented.

2.3 Adaptive Prior Fusion [5]

Huo and Ma use super—vectors to construct cluster-trained models in a manner analogous to the
eigenvoice method [5]. It is intuitive that successful clustering should yield clusters that span a space
similar to that derived from Principal Component Analysis. Indeed, our experiments have shown that
the resulting subspaces of the two approaches are substantially the same [9]. In effect, the super-
vector clustering done by Huo and Me has a dimensionality reduction effect essentially equivalent to
that of PCA.
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The contribution of Huo and Me is twofold. First, the cluster coefficients are constrained so that
the adapted model b lies within the simplex defined by the cluster models m¢. In effect, convex-set
constraints are imposed:

a) Ef=1cl=l

b)cz>0;15£gL

Second, the need for adaptation data has been eliminated altogether: the recognition data itself is
used for what in previous approaches was called adaptation. In our proposal to ioIIow, we adopt both
of these processing aspects. Figure 3 illustrates the adaptive prior fusion architecture

Recognition Data    

b-m

   

b: [m1 m2 m3-~-~ml_]c ;c minimizes

subject to constraints

Figure 3: Adaptive Prior Fusion

In contrast with the proceeding methods, the data clusters (DC) in the adaptive prior fusion‘technique
consist of the data from a collection of speakers, rather than from single speakers.

3 Hypothesis-Driven Adaptation

As previously mentioned, each of the strategies surveyed above maintains training-data clusters on
the basis of speaker. While it is clear that inter-speaker variability is a considerable challenge, it is
not clear that this challenge renders insignificant other sources of variability. Indeed, observations
have shown that intra-speaker variability can be as signilicant as inter-speaker variability [7]. More-
over, variabilities due to environmental factors can also be considerable, and just as critical to the

commercial success of network-oriented speech recognition. In Section 3 we introduce an extension
to the works considered here that handles all manners of variability consistently.
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Via Figure 4, we introduce an architecture that we have called Hypothesis-Driven Adaptation (HyDrA)
[9]. There are two principal extensions of previous work here. First, there is an explicit dependence
on phonetic context (denoted by the subscript p in Figure 4). In effect, for every phonetic unit p, an
independent clustering takes place. These units should be relatively small: between HMM states
and syllables in length. Phonetic dependence multiplies the number of adaptation units. On the
other hand, the observed variability on any one phonetic unit in the training set will certainly be more
contained than the variability across all phonetic units. As a result, we need many fewer per-unit
clusters as the phonetic domain over which we apply those clusters reduces. As an example of this,
we compare the fourteen dimensions reported to be necessary to capture half the variability in the
spoken English alphabet [2] to the eight dimensions require to capture half the variability in a single
digit [9].

The second principal extension to previous work is that we engage the cluster coefficients derived
from diffuse (smooth) models m,,, and use them to construct adapted models from complex models
m,,,. in this manner, we can obtain high quality estimates of cluster coefficients based on smooth
models, while using those same coefficients as the basis for constnicting high—quality models for
recognition. Required for this to be effective is the fact that the data clusters active in the two domains
are identical. One can consider that the cluster coefficients under the convex constraints mentioned
above represent the probability of membership in each of the clusters, i.e.,

61? ~ 1J(RDp E DClp).

Under this interpretation, the export of the cluster coefficients from one domain to the other is ren-
dered permissible by the maintenance of the data clusters across domains. Also necessary is the
fact that parameter re-estimation is explicitly dependent on segmenting models map and bop. Using
these segmenting models as priors in MAP processing is appropriate. While this is not so critical in
the context of the complex models, it is important to maintain a consistent relationship between the

- cluster models ml, and the parameters estimated from the recognition data, m,.

. in practice, HyDrA processing will be performed in a second pass. A first pass processing will provide
an N-best list or lexical graph over which HyDrA models will be derived for every constituent phonetic
unit. The convex optimization problem of determining the cluster coefficients will also yield a “success
factof' f, which is given by _

fp = 1 — min {—JW) 1] .2,
llmpil

where the quadratic objective function J is given by

Key) = “[mmmzp ' ‘ ‘ mLplcp ‘ mpilz-

When the variability capture is high, the objective function J is small relative to the norm of m and
f is consequently close to unity. 0n the other hand, if the cluster models cannot represent the
observed phonetic unit hypothesis, the objective function can be quite large, in which event the model
adaptation falls back to the base models. For hypothesized phonetic units thatare consistent with
variability observed in training, models of much better quality than the base models will be derived.
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Figure 4: Hypothesis-Driven Adaptation
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Unfortunately. the independent clustering over different phonetic units breaks the advantageous cor-
relation inherent in speaker-oriented clustering. However, the approach enables every sourceof
variability to be managed within a consistent mechanism. The correlatedness of different clusters
over different different phonetic units will now be recovered via a separate level of processing.

For each of the P phonetic units we now have L data clusters capturing the significant variabilities
observed for that unit in the training set. Moreover, each data cluster represents a subset of that train-
ing set. As a result, it is possible to construct a cluster co-oocurrence matrix (somewhat analogous
to that proposed in [4]).

For every utterance in the training set, we accumulate counts of pair-wise data cluster membership.
This gives us a large PL x PL matrix capturing the correlations lost in the elimination of speaker-
oriented clusters, Moreover, other significant correlations are also captured via this mechanism.
With suitable normalization, the cluster co—oocurrence matrix represents an estimate of the pair-wise
conditional cluster probabilities.

For each hypothesis j in a recognition first pass of a given utterance, the average joint pair-wise
probability of the set of estimated adaptation coefficients will be estimated by the quadratic form
CjTPCj/Nj where Cj is the concatenation of cluster coefficients for the hypothesis j . Nj is the total
number of phonetic units for that hypothesis and P is the pair-wise conditional cluster probability
matrix. We would expect that cluster coefficients in keeping with the behaviour of the training corpus
would score better with this criterion than those derived from misrecognition hypotheses.

This explicit evaluation of the cluster coefficient probabilities represents a super-phonetic but sub-
Iexical level of processing. Research has suggested that human modeling of speech includes pro-
cessing at an intermediate level such as this [8]. As a result, it is possible that a super-phonetic layer,
made available by the proposed mechanism, for example, may represent a missing element for most
modern speech recognition systems.

4 Experiments

I

In this section, results of a simple prootvol-concept experiment are reported. Hands-free, cellular,
noisy “telephone number" Quebec French utterances were segmented by an off-the-shelf recognizer
into pseudo-isolated single-digit utterances that provided both training and test material. Approxi-
mately thirteen thousand of each of ten digits were obtained in this manner. Of these, one thousand
of each digit were set aside for testing and the remainder were used for training. Note that the fact
that the test set matches the training set in terms of all its variabilities is quite artificial. Our bench-
mark processing benefits. equally from this match. Moreover, the assumption implicit in the HyDrA
development, however optimistic, is that the training set is sutficiently rich to observe any testing
variability.

A "base" model, to be used as a benchmark as well as be, was trained having a mixture of eight Gaus-
sians for state observation pdfs. Features were extracted according to the standard mel-trequency
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cepstrum processing. Nine such features, their deftas, and the first and second time-derivative of
energy were concatenated together to provide twenty features at intervals of 12ms. Cepstral mean
subtraction, with estimates generated over an entire digit, was employed as a feature debiasing
mechanism. Another model, mo was trained having single-Gaussian pdf parameterizations and
twelve-component feature vectors.

As a first investigation, the words themselves were taken to be the phonetic unit on which HyDrA
depends. Unfortunater this has the effect of eliminating any contribution to recognition that may
have been obtained by the super-phonetic processing. It will, however, provide a first look at a more
primitive HyDrA processing.

Given roughly ten states per digit and twelve parameters per state mean, k-means clustering on
around thirteen thousand vectors in one hundred twenty dimensions yielded eight cluster models,
mm, for each digit. The training sub-corpora corresponding to each of these cluster models were
then used to re-train the complex model bu to obtain the complex cluster models blp.

While HyDrA is designed to be performed in a second pass, the present experiment applied HyDrA
processing to all ten digits. Each test utterance was decoded as each possible digit, and parameters
were re—estimated to obtain m,,; p E (0, l, - - ~ ,9}. Note that this process is very fast due to the small
feature vector and the low complexity of the diffuse models mop. '

Cluster coefficients for each digit were now obtained using cp = argmin J(c,,) under the constraints
described above. Now, adapted models by; p e {0. 1, - r - ,9} were constructed in accordance with:

by = fl? [bop blp ' ' 'bfirlcr + (1 "‘ fp)b0P'

Once again, this procedure is an efficient one. The relatively few constraints render the solution of
the convex programming problem manageable. and the complex model construction is very simple
by comparison to the subsequent decoding on its basis.

We remark that while theHyDrA construct requires a large number of parameters, most of these
are abstracted from the recognition procedure. In fact, the number of “active” parameters, is. those
used explicitly for recognition purposes, are only increased by a small proportion from the benchmark
decoding via be. Further, this proportion would be even smaller should the complexity of b0 be
increased in keeping with standard practice. In the present case, however,'there was insufficient
training data to support large Guassian mixtures in high-dimensional spaces.

The results of the experiment are tabulated below. The 24% reduction in error rate is not uniformly
distributed across the digits. Rather, the digits for which the benchmark model was least effective
benefit the most from HyDrA processing.

 

5 Conclusions

  
It is clear that a systematic capture of variability in training enables efficient adaptation in recognition.
A number of earlier strategies toward this end have been surveyed and a new processing architecture
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Table 1: Recognition summary

digit: 1 2 3 4 5 6 7 8 9

HyDrA(L=B) 96.3 95.9 98.5 96.0 97.2 95.3 95.1

 

96.6 96.3 98.9
benchmark(bo) 94.9 94.3 98.5 95.4 96.7 91.7 91.3 96.6 96.4 98.9

 

has been introduced. Based on developments in eigenvoices [2], the present approach follows [5]
in its use of recognition material for adaptation. By imposing phonetic-unit dependence on this pro-
cessing, we need to adapt for each first—pass recognition hypothesis. Hypothesis-driven adaptation
performs this adaptation in an inexpensive modeling domain and then exports the cluster (adapta-
tion) coefficients into a more complex modeling domain by way of common training sub—corpora.
Testing on a simple but very challenging recognition task demonstrates that HyDrA processing yields

significant recognition gains. Further results and analysis are forthcoming in [9].
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