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1. INTRODUCTION

It is widely accepted that in order to achieve high recognition accuracy With a phoneme-level hiddenMarkov
model (HMM) based speech recognition system it is neceaary to use context-sensitive models. The standard

solution to this problem is to use triphone HMMs [12]. in which it is assumed that the only significant
contextual elfects on the acoustic realisation of a particular phoneme are due to the immediately preeeeding
and succeeding phonemes. For example the phoneme S‘ in the word /bUk$Qp/ (bookshop) is represented as
the triphone (S:lr_Q) corresponding to S in the context of k and Q.

There are a number of problems associated with this approach to context modelling. Firstly, the basic tri~
phone assumption is incorrect, since the acoustic realisation of a phoneme may be more strongly influenced

by contexts other than its immediate neighbours. In the example given above the preceeding U may have a
significant effect on the realisation of the S, but this elfect cannot be accomodated in the triphone approach. if
contexts other that immediate neighbours are considered in order to overcome this problem then the number

of models becomes too large, resulting in the necessity for impractically large training sets for robust model
parameter estimation. Indeed, even if attention is restrich to triphones the number of models may be pro
hibitively large in this respect for significant vocabularies. The second problem is that the triphone approach

contains redundancyr Different triphone contexts Which may have the same influence on the realisation of a
particqu phoneme are allocated separate models, which is wasteful in terms of both computation and use of
training material. Finally, in the case of task independent speech recognition where the goal is to produce a

set of "vocabulary independent" phoneme level HMMs using a corpus of general speech and subsequently to
map these models onto specific tasks with no further training, there is the problem of choosing a model for a

particular triphone in the application vocabulary whidi dou not exist in the model set. This occurs because
there are insufficient examples of that particular triphone context in the training set to reliably estimate the
parameters of a triphone HMM.

One approach to the complementary problems of undertraining and redundancy in triphoncs is the use of
clustered, or “generalised”, triphones [4, 5, 8]. However, this method leave two problems unresolved : first,

the measure of distance between pairs of triphone HMMa is typically based on differences between the state

parameters (the mean and the covariance matrix) of the two models. But lhse parameters are unreliable for
precisely those models which need to be put into equivalence classes because of lack of training data, The
second problem is that it is not clear which cluster is new triphone, which was not included in the clustering

prams, should be assigned to.

This paper dscribes a decision tree based approach to modelling phonemes in context which overcomes some

of the limitations described above. The basic technique is taken from [3]. A given phoneme is associated with
a single binary decision tree. In principle the terminal nodes of this tree correspond to equivalence classes of

contexts which have the same influence on the acoustic realisation of that phoneme, and a context-sensitive

HMM is built for each of these terminal nodes.

The phoneme decision trees are used to create pronunciation dictionaries for new vocabularies in terms of

these HMMs. The properties of the trees permit models to be chosen for contexts which do not occur in

the training set, thus providing a “vocabulary independent”, or “task independent”. capability. Methods
for constructing such decision trees, using them to create a general model set, and creating task-specific
pronunciation dictionaries are described here. The results of recognition experiments based on thae methods
are also presented Comparisions are drawn with the best results obtained using conventional triphone models.

 

In. SAM Phonetic Alphabet (SAMPA) [is n used Ihmuflloul this memorandum
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2t PHONEME DECISION TREES

2.] Decision Tree Format
Figure I shows an example of a phoneme decision tree for the phoneme /aU/. Each phoneme has its own

binary tree and associated with each ‘terminal’ node of the tree there is a context sensitive HM M. The purpose

ofthe tree is to determine which of these HMMs should be used to model that phoneme in a particular context.

For each node in the tree there is a phoneme question set (shown in square brackets), a position and two

successor nodes. This set consists of phonemes which, in that relative position. have a similar effect on the

acoustic realisation oi the decision tree phoneme. For example, node 2 in figure I is associated with the

qustion “is the next (relative position I) phoneme one of the set {Pi I .k, s, S, f, T, It, IS} (i.e. a voiceless

consonant)". For ewry occurrence at a phoneme in a new word, it’s tree qustions are applied in turn to the

neighbouring phonemes, starting at node 1. II' a neighbouring phoneme in the correct relative position is one

of those in the parlicuIar question set, the tree is dacended along the left hand ‘l’es’ path. Otherwise the

right hand ‘No’ path is followed. Descending the tree repraents categorising the contexts into smaller and

smaller sub-sets, and in the limit. the terminal nodes of the tree would represent the phoneme in a unique

context. If these contexts are constrained to be immediate. they would correspond to triphonese

The construction of the trees and the estimation of HMMs for each terminal node are dealt with in Section 3.

Dec Thee For The Phoneme aU

 

Number of Nodes = 7

NodeNumber=l [tdnsZTDlr] I 2 3

NodeNumber=2 [ptksSl’ThtS] I 4 5

NodeNumber=3 [le(V@Q] I 6 T

 

5 7

Figure 1: Example ol'a Binary Decision The.

2.2 An Example of the Decision The Operation

To illustrate how the tree is used in selecting an appropriate model for a phoneme in a particular context.

consider the problem of selecting the correct model for the diphthong /a[I/ in the word ‘about'. transcribed

phonemically as /@baUt/_ using the decision tree in‘ figure 1. Starting at node I. the question is “is the

phoneme on the immediate right (relative position 1) of aU one of the set [I d n s z T D I r] (i.e. an alveolar

consonant). The phoneme ‘t’ is in this set, hence a positive answer is obtained. The SIICCSSOI node for the
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answer Yes is node 2. corrwponding to the question “is the phoneme on the immediate right an unvoiced
consonant. Again the answer is ya, leading to node 4, Node 4 is a terminal node and hence corresponds to an
equivalence class of contexts which, accordingto the decision tree. have the same ellect on the realisation of
the phoneme all. The model associated With this node is therefore used to model the phoneme ann “about”.

Application of the other phoneme decision tres to the remaining contexts in the word allows it to be written
as a sequence of terminal node HMMa.

3 DECISION TREE GENERATION

A data driven method is used to determine the content and ordering of questions in each decision tree. The
algorithm is based on [3], it is sequential and non-optimal in terms of the obvious optimality criteria which
might be applied.

3.] Speech Data, Annotation and Question Sets
The basic ingredients of decision tree generation are a corpus of training speech which is annotated at the

phoneme level, and the phoneme set and allowed range of relative position components of the questions.

3.2 The NodeSplitting Algorithm
initially the decision tree for a given phoneme has a single node N; (the root node), and the set S, of all
segments of acoustic speech pattern corresponding to that phoneme are associated with that node. The
nodesplitting algorithm is applied once to each node of the tree until no further splitting is possible. Each

successful application of the node-splitting algorithm generates two new nodes which become new candidates
for splitting. \‘i'hen a new node cannot be split it is designated a terminal node. When all unsplit nodes are
terminal nodes the splitting procss ends.

3.3 Definition ofthe Node Splitting Algorithm
Suppose that N; is a node and that it is asociated with aset S.- af acoustic segments. Each question Q
defines a partition of S.- into two disjoint sets 5,-(0), the set ofsegments in 3.- whose phonemiccontexts return
a positive answer to question 0, and 54(3). the set of segments whose phonemic contexts return a negative
answer to 0. Clearly 5i(Q)U 51(0) = 5;. For each pair of segments x and y in 5.10). let D(z.y) denote
the dissimilarity between a and y. In the experiments dacrihed in this paper the dissimilarity measure D is
the cummulative distance between 2 and y. obtained from a standard dynamic programming based template

matching algorithm [ll].

Define

0,...(0): 2 D(=.y).vm,(o)= z: D(z.y). (u
t.vE5.(Q) LVN-(Q)

ll D,.,,(Q) is small, then the difierenca between pairs of acoustic segments in the set S.- (Q) are (on average)
small. hence the phonemes in the phoneme set corresponding to O in the position corresponding to Q have

a similar acoustic efl'ect on the acoustic realisation of the given phoneme. Similarly, it' Dn,,(Q) is small then
the set of phonemes Which are not in the phoneme set corresponding to Q in the position corraponding to Q
have a similar contextual eflect on the given phoneme.

Hence the “best” partition of the node N.- is that which is defined by the question 0 for which the quantity

Do = 0M0) + D..,(Q) is minimised. Define

Q = argmianq (2)

Thc_splitting algorithm assigns the question to node N; and associates the successor nodu, 52(0) and

IMO), of N,- with the acoustic segment sets 5.10) and 5,-(0) rapeetively.
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The nodesplitting algorithm is initially applied to the root node N1. Each new node N.- is split unlss the
stopping criterion in section 3.4 is satisfied, in which case N.- becomes a terminal node. The proces stops
when all noda which have not beensplit are terminal node. Notice that the splitting procas is implicitly
biased towards partitions which associate similar numbers of segments to the sets 5((0) and 3(6). This
is because an equal split minimises the total number of terms in the summations in (I) An alternative
definition of Dq in which each of the terms DP..(Q) and D...,(Q) is normalised by the number of terms in
the summation could he used.

3.4 Stopping Criteria
The current implementation of the node splitting algorithm includes a user specified minimum node size
parameter Mmin. If when a question 0 is applied to node N.- either lS;(Q)l < Mm". or |S.-(Q)| < Mm“. then
the question 0 is disallowed. If all questions are disallowed then N; cannot he split and becomes a terminal
node.

The parameter Mm“. ensures that each terminal node of a decision tree is associated with suflicient examples
in the training set to enable the parameters of a HMM to be reliably estimated.

3.5 Terminal Node Model Estimation
it is straightforward to associate each terminal node of a decision tree with a trained HMM. The standard of
the Baum-Welsh parameter estimation algorithm for sub-word H.\l.‘\ls require the following ingredients:

0 An initial estimate of the parameters of each HMM,

e A set of training utterances annotated orthographically. normally at the sentence or phrase level, and

o A pronunciation dictionary which exprsses each word in the application vocabulary as a sequence of
phonemelevel labels Which correspond to terminal nodes of a decision tree, and hence models in the
HMM set.

An initial estimate of the parameters of each context sensitive HMM is obtained from the corresponding
monophone RM“. The pronunciation dictionary is generated by applying the procedure described in section
2.2 to each vocabulary word.

4. EX PERI“ ENTA L METHOD

The experiments were designed to test two properties of the decision tree based approach: (i) the ability
of this approach to overcome the undertraining and redundancy problems associated with the conventional
triphone based approach, and (ii) the ability to cope with neW, unseen vocabularies. To invatigate (i) a
“task-dependent" experiment was conducted using the Airborne Reconnaissance Mision (ARM) task The
experiment compares the performance obtained using context-sensitive HMMs derived using the decision tree
method with that ofconventional triphone HMMs on the ARM task. To investigate (ii) a I‘taslr-independent"
experiment was conducted in Which phoneme decision trees and the associated context sensitive HMMs were
constructed using a corpus of general English speech. The performance of these models was compared with
that oftask-dependent models on the ARM task. In addition, both sets of decision trees (together with their
associated HMMs) were cvaluated on an Air Traflic Control (ATC) task.

4.1 Speech Data
4.1.1 Test Data. Recognition experiments were performed on two test sets, referred to as Sl-ARM and ATC.
The Sl-ARM test set consists of recordings of 10 male subjects each speaking 3 ARM reports. This is the
evaluation set from [10]. The ATC test set comprises recordings of 100 ATC sentences. 10 each from the same
10 male speakers Both tat sets are taken from the “5189" corpus

4.].2 Training Data. Two sets of training material were used in the experiments described in this paper:
the Sl-ARM training set, and the SRU-SCRIBE training set. The former consists of speech from 61 male
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speakers, each of wth spoke 3 complete ARM reports [9]. and the latter of speech from 230 male speakers,
each of whom spoke 10 sentences based on SCRIBE sentence list B [14]. All recordings are taken from the
“Sl89” speech corpus [2].

4J3 Pro-Processing. All of the speech was preprocesed using the SRUbank filterbank analyser in its dcault
configuration (27 filters spanning frequencies up to "kHz, 100 frames per second), followed by variable frame
rate analysis and a cosine transform. The final parameterisation is the CC86 “delta-cepstrum" representation
from [10].

42 Decision The: Generation
4.2.1 Annotation of the Training Sets For each training set, phoneme level annotation was obtained using
a forced recognition pracess based on a set of conventional triphone HMMs trained on that set. The forced
labelling proc requires the speech to be labelled orthographically at the sentence level. Word-level HMMs
are constructed for each word in a sentence by concatenation of the appropriate triphone models according to
a pronunciation dictionary. The word~level models are then concatenated in turn to produce a sentence-level
HMM, which is mapped onto the speed: data using a conventional dynamic programming based alignment
algorithm. The phoneme end points are then recovered by decoding the optimal state sequence. This makes
an implicit assumption that although the triphones set may be undertrnined and therefore unable to generalise
to unseen data, they are adequate for forced labelling of the training set.

42.? The Question Sets. The phoneme set components of the quations were chosen according to standard
phonetic theory of contextual influences in speech at the phoneme level. In the case of the consonants.
phoneme sets were chosen according to place of articulation (labial, alveolar, painter-alveolar or velar) and
manner (voiced or unvoiced). Vowels were grouped according to tongue position (front, centre or back) and
length (long or short, with “long” including all diphthongs). Diphthongs were grouped according to tongue
position with rspect to first element (front, centre or back) and second element (fronting, centring or backing).
In addition, in order to enable triphones to be used in cam where there are sufficient training examples and
to allow for unpredicted contextual cfl'ecta, each individual phoneme was included as a phoneme set in its
own right. In this experiment, only immediate left and right contexts (positions -1 and 1) were used in the
construction of the trees. A complete list of phoneme sets chosen is included in [7].

A set of phoneme decision tree: was produced for each of the two training sets using the construction algorithm
dacribed in section 3 with a minimum node size of 50. This ensures that there are at least 50 training exampla
for each context-sensitive HMM. The SRU-SCRJBE phoneme decision trees are shown in full in

4.8 Context-Sensitive HMM Set Generation
HMMs corresponding to the terminal nodes of the phoneme decision tree were obtained as described in section
3.5, using the some training sets that were used to construct the decision trees. For l'lMM parameter estimation
these sets were labelled orthographically at the sentence level. All of the phonemelevel HMMs have 3 single
multivariate gaussian states With diagonal covariance matrices. Two sets of HMMs were estimated for each
set of decision trea, one with state specific covariance matrices, and the other with asingle shared “grand”
covariance matrix [6]. This was done because previous experiments had shown that in the case of the speaker
dependent ARM system, which used approximately 1500 conventional triphone HMMs, best perfomancc was
adticved with a shared covariance matrix [9], while with smaller model sets best performance is achieved with
state specific covariance matrices [16]. The current experiments use 318 models (SI-ARM decision trees) and
416 models (SRU<SCRIBE decision trees).

4.4 Recognition Experiments.
Once the context sensitive HMMs have beentrained, they can be used to recognise words from a given vocab-
ulary. The decision trees are applied to each word in the vocabulary to produce an appropriate pronunciation
dictionary in terms of their terminal nodes. Even if there are contexts in the new vocabulary which did not
occur in the original training data, application of the tree questions Will lead to a terminal node model for
that context. The pronunciation dictionary and model set are then downloaded onto a recognition engine. to
pro'Vide a task specific rcmgniser.
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In the current experiments recognition uses the conventional onopass algorithm With beam search and partial

traceback

5. RESULTS

Table 1 shows the resulla of recognition experiments performed using the Sl-ARM decision tree and context

sensitive model sets applied to the Sl-ARM and ATC test sets. The table includes results for models with

statespecific and “grand” covariance matrica. All experiments were conducted with a word insertion penalty

of 30 [15] and no explicit syntax. The table also shows the result for conventional triphones with grand variance

trained on the same training set, allowing a direct comparision. A number of interesting conclusions can be

drawn. Concentrating on the % word accuracy column. for a word transition penalty of 30 the decision tree

models score slightly (but not significantly) better than the triphone models, but with a much smaller model

set. This is consistent with results obtained using clustered triphones presented in [8]. Note that the triphone

models have a common grand covariance matrix, whereas the best SI-ARM decision tree based models retain

their individual state covariancu. Indeed, it can be seen that performing a grand variance calculation on

thae models reduce the performance. as predicted in [IS]. For the AT0 tat set the performance drops. This

is consistent with rsults from other laboratories and reflects the fact that in a constrained task like ARM,

phoneme models which are nominally concerned only with immediate left and right contexts actually take on

much wider vocabulary-specific characteristics which do not generalise to other vocabularies

The results obtained with the SRU-SCRIBE decision tree based models are shown in table 2‘ For the SI-ARM

task performance is significantly worse than that obtained with the SI-ARM decision trees and models, again

reflecting the fact that the latter method models effects due to contexts wider than immediate neighbours.

The performance on the ATC task is also worse than that obtained with the Sl-ARM decision trees and

'models. This can be explained by the overlap between the ARM and ATC vocabularies.

ARM ARM DATA TEST SET ATC DATA TEST SET

I I I a ‘ I e a ‘TRAINING ‘l ' ‘ I .

MODELS TREE TREE TREE TREE   
  

     
    WP=30, GV \\'P=Jn, GV WP=30 \VP=30, GV WP=30

ma-
-s-
m-

Table I: Results of experiments performed using the SI-ARM decision tree

5. CONCLUSIONS

The baseline result of 74.9% word accuracy on the SI—ARM evaluation set using the SI-ARM decision tree

shows that decision tree modelling can provide good recognition performance with many less models than

equivalent triphone methods, To obtain the results in table 1, 1494 triphona were used compared to only 318

decision tree models. The “task independent” rsults obtained on the ARM vocabulary with the SRU-SCRIBE

decision trea are disappointing In principle one would expect the SRU—SCRIBE models to generalise well,

since the SCRIBE sentences were chosen to give good coverage of phonemes in context. However, it is clear

that the models associated with the Sl-ARM decision trees, although nominally generalised triphonesI are
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scam}: ARM DATA TEST SET ATC DATA TEST SET

I I ‘ I ~ 0 ‘TRAINING 0 ‘ I a V

TREE TREE TREE TREE
WP=30 WP=30, GV WP=30 WP=30, GV

 

Table 2: Results of experiments performed using the SRU—SCRJBE derision tree

modelling vocabulary specific contextual influences which extend beyond immediate neighbours, and that it
is this vocabulary-specific context modelling which leads to good performance.

Since the basic HMMa are of the same type {or both the SI-ARM and SRU-SCRJBE decision trees (3 single
multivariate gaussian stat: with diagonalcovariance matrices), the results suggest that talk—independent
performance can be improved by the use of more comprehensive contextual modelling. This suggests that
further experiments should he conducted to exploit the ability of the decision tree method to consider contexts
wider than immediate neighbours. However, this implies a need for a larger number of context-sensitive models
and more training material to reprsent a richer set of contexts
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