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The report presents the results of numerical simulation of the evolution of intense acoustic noise in 
nondispersive media. The basic equation describing the propagation of nonlinear waves in nondispersive 
media is the Burgers equation (BE). It is known that during noise propagation in a nonlinear medium, 
changes occur to the spectra as well as the higher statistical characteristics of the wave (multipoint 
probability distribution, higher moments, and cumulants). The spectral method of the numerical solution of 
the BE allowed us to determine the range and the wave profile at different distances from the source (both 
before the formation of the shock front, and after it). It is very important that this scheme of numerical 
solution of the BE enables taking into account the geometry of the initial conditions, i.e., it is suitable for the 
description of cylindrical and spherical waves. However, the processing of acoustic signals through higher-
order spectral analysis allows us to learn about the properties of the signal much more than the traditional 
spectral analysis. Higher-order spectral analysis (bispectral analysis) in signal processing tasks can save the 
information about the phase spectrum of the input signal, and therefore, it is possible to restore a priori 
unknown waveforms. The possibility of recovering the input spectrum from the measured spectrum and 
bispectrum at the output of the nonlinear medium is discussed. This model is a virtual instrument which can 
solve some diagnosis problems using spectral and higher-order spectral processing tools. All this suggests 
the possibility of using this scheme to obtain numerical solutions for  inverse problems of nonlinear 
acoustics.  
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1. Introduction 
 At the end of the 1930s, the Dutch scientist J.M. Burgers [1] introduced a one-dimensional 
model for pressureless gas dynamics. This model is now known as the Burgers equation and it has 
not only the same type of hydrodynamical quadratic nonlinearity as the Navier–Stokes equation that 
is balanced by a diffusive term, but also similar invariances and conservation laws [2-4]. One of the 
most import applications of the Burgers equation both for regular and random fields is nonlinear 
acoustics [5,6], including investigation of intensive aircraft noise [7,8]. The evolution of high-order 
spectral functions of random waves propagating in nonlinear medium and application of higher-
order spectra in problems of strong acoustic noise diagnosis was also investigated [9-12]. Retrieval 
of  radiated-signal parameters from the measured acoustic field far from the source is one of the 
important problems in nonlinear acoustics [13]. In general, the problem is to restore the shape of the 
emitted signal or the original spectrum. In this paper, we discuss the possibility of restoring the 
parameters of regular and noise signals in the case of zero and vanishingly low viscosity. We show 
that one of the effective methods to restore the original spectrum is to use bispectra. 
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2.  The inverse problem of nonlinear acoustics in the time-distance 
domain. 

In this part, we consider the inverse problem of nonlinear acoustics in the time-distance domain: 
assuming that we know the velocity field ),( ztv at some distance from the input, we try to reconstruct the field  

)(0 tv  at the input ( 0=z ). The propagation of an intense plane acoustic wave can be described within the 
framework of the Burgers equation [5] 
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When writing (1) we used the dimensionless variables 
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Here p  is the acoustic pressure, x is the coordinate along the beam axis, t  is the time in a 
coordinate system moving with the wave speed of sound 0c . Variables (2) are normalized to the 
peak value of pressure 0p , the characteristic frequency of the wave , and nonlinear length SHl - 
which is the distance at which a discontinuity in the plane wave that is harmonic at the input is 
formed: 
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The ratio of these lengths forms a dimensionless number ISSSH ll /=Γ  - the inverse acoustic 
Reynolds number (the number of Goldberg). At zero viscosity, the Burgers equation (1) becomes 
the Riemann equation which is also known as the Hopf equation, or the equation of a simple wave  
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Equation (4) is equivalent to the characteristics of the system, the solution of which 
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is a solution in parametric representation  and allows us to write the solution of the Riemann 
equation in implicit form: )(0 zvtvv += . To find the field ),( ztv  at time t in at a distance z from a 
source it is necessary to solve a nonlinear equation  

),(),( ***0* ztzvt ττττ =−=  
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and then the velocity field can be represented as 
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It is also easy to imagine the inverse problem solution in parametric form. It follows from (5) - (7) 
that if we know the field ),( ztv  at time t, at distance z from the input, then the input velocity field 

)(0 τv  is defined by the relations 
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),(),,()(0 ztzvtztvv +== ττ  (8) 
Now let us discuss the fundamental possibility of solving the inverse problem taking into 

account the formation of discontinuities. At vanishingly small viscosity ( 0→Г ), the solution of the 
Burgers equation still has the form (7), but ),(* ztτ  is now - the coordinate of the absolute maximum 
of the function ( )ztG ,,τ  to the variable  

( ) ( ) ( ) ( ) ( ) tdtVtF
z
tFztG

t

′′=
−

−= ∫0

2

0 ,
2

,, τττ  (9) 

By substituting the coordinate of the absolute maximum ),(* ztτ  in expression (7), we obtain 
the field ),( ztv  at time t at a distance z. For small z function ( )ztG ,,τ  has a unique maximum for 
all t and, therefore, the field ),( ztv  is continuous. This solution corresponds to the solution of a 
simple wave and it is possible an unambiguous recovery of the input profile is possible. With 
increasing distance from the source (z height) for some mt  function ( )ztG ,,τ  has an equal maxima at 
two points ],[ 1+mm ττ  simultaneously. This time point mt corresponds to the position of discontinuity. 
The entire section of the profile of the input range ],[ 1+mm ττ  is absorbed by the shock. 

 
 
Figure 1. Restoring the initial profile with the account of shock front formation  (formulas 6-8) 

  
Thus, after the formation of shocks is fundamentally impossible to solve the inverse problem 

on the entire spatial range. These shock parameters (amplitude and velocity) give information only 
on the integral characteristics of the initial field in the interval ],[ 1+mm ττ   [13]. The solution of the 
inverse problem is fundamentally different to regular and noise signals. For a regular signal, one 
can determine the region before the shock in which the evolution of the field is reduced to the 
simple wave equation, and the inverse problem has a unique solution. For Gaussian random fields 
in the input statistics shocks start at arbitrarily small distances from the entrance. In this case the 
exact solution of the inverse problem is fundamentally impossible. However, in [14] it was shown 
that at the initial stage of this effect is quite small, which gives hope to solve the inverse problem 
for a significant proportion of the time intervals of the initial perturbation. 

 
ICSV24, London, 23-27 July 2017  3 



ICSV24, London, 23-27 July 2017 

3. The inverse problem of nonlinear acoustics in the frequency-distance 
domain. 

 In the time-distance domain we have the solution of the Riemann equation (4) in parametric 
(5),(6) or implicit form )(0 zvtvv += . The spectral representation of the Burgers equation can be 
written as 
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In equation (10), direct and inverse Fourier transform is used 
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The spectral form of the Burgers equation (10) describes the evolution of the Fourier 
component ),( zc ω of intensive acoustic waves and is convenient for numerical modelling of regular 
and intensive noise acoustic signals. This equation can also be easily modified to describe the 
cylindrical and spherical waves [14].   

At the initial stage of propagation and at zero viscosity ( ) one can write the explicit 
expression for the Fourier component ),( zc ω of Riemann wave.  Using the parametric solution (5) 
we can rewrite the expression for the Fourier component ),( zc ω in the explicit form 
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and finally by the integration by the parts we get [15] 
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Thus, we have an explicit relation for the Fourier component ),( zc ω of the Riemann wave, but to 
find the initial velocity )(0 tv , or initial Fourier component )(0 ωc , one needs to solve complex 
nonlinear equation (13). 
 Consider an initial task of restoring the power spectrum. For stationary random processes, 
spectral density )(ωS  and the bispectral density ),( 12 ωωS  associated with random delta-correlated 
Fourier components of relationships is: 
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For Gaussian noise, the spectra of all the higher orders, in particular the bispectrum are 
equal to zero. As the wave propagates in a medium with a quadratic nonlinearity, new spectral 
components arise at the new harmonic frequencies . Thus, there is a denormalization of 
the input Gaussian process and its higher spectrum is not equal to zero. Moreover, from (14) we see 
that the bispectrum reflects the statistical correlation triple spectral components emerging from the 
nonlinear interaction of the harmonics. The role of bispectrum as an indicator describing the 
nonlinear effects becomes obvious if we write down the equation for the spectral density 
corresponding to the spectral form of the Karman-Howarth equations [16]: 
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Thus, we see that the bispectra define the process of nonlinear energy transfer along the spectrum. 
 On the basis of (13) and (14) we can obtain expressions for the spectra and bispectra of random 

simple waves. In particular, for the spectrum of a simple wave with Gaussian initial conditions, we 
obtain the expression [3] 
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In expression (16) )(τB  is the correlation function of the velocity field at the input and )0(2 B=σ , 
the variance of the input process. This expression describes the spectrum of a simple wave, for 
which there is no damping. However, the integration over all frequencies shows that (16) describes 
the decrease of the energy of a simple wave [3]. In [17-19] it was shown that this effect is due to the 
fact that the spectral representation of the solution of the Riemann equation (12) corresponds to the 
transition from a multi-valued solutions to the unambiguous one. The inverse Fourier transform of 
(12) is a single-valued solution which is the summation of the branches of multi-valued solutions 
with different characters and accurately simulates the damping at discontinuities. In [19] it was 
shown that at the initial stage  this effect is quite small, which gives hope for the solution of the 
inverse problem.  
 Generally, for finding the initial spectrum )(0 ωS  (correlation function )(0 τB ) it is necessary 
to solve a nonlinear integral equation (16). Nevertheless, at the initial stage in the frequency range 
( 1<<zσω ), the exponent in (16) and also in the expression for the bispecrum can be expanded in a 
series [3,9] 
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 Here ⊗  is the convolution operator. From (17) it follows that the independent measurements 
of the spectrum and bispectrum in section z allow us to restore the initial spectrum 
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 For the numerical simulation of random evolution of intense acoustic waves, we used the 

Burgers equation in spectral form (10). To realize the numerical simulation based on equation (10), 
an iterative scheme was proposed using a fast Fourier transform, which enables the calculation of 
the wave profile, spectrum and bispectrum of nonlinear waves. 

To simulate the noise v (z, t),  a  random number generator was used, which allowed us to 
form a Gaussian random process with zero mean and unit variance. The original process was set to 
the time step Δt = 0,001 sec, and the length of realization 2048 points (i.e., 211). The software for 
Fast Fourier Transform (direct and inverse) was taken from the MATLab library where numerical 
simulation was carried out. To smooth the frequency spectrum on the borders, the Hamming 
window was used, which allowed us to reduce the side lobes of the spectrum after filtering. The 
dimensionless Goldberg number was set to 0.01, which corresponded to the values of the Reynolds 
number equal to 100. On the basis of obtained implementations of Fourier images of the velocity 
field, standard  MATLab programs were used to calculate the correlation functions and bispectra at 
different distances from the entrance.  Averaging for spectral and bispectral characteristics was 
performed over 1,000 implementations. Further, based on expressions (15), the function T (ω, z) 
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describing the nonlinear redistribution of energy over the spectrum was evaluated, and the input 
spectrum was restored using formula (18). 

 
Figs. 2a and 2b present function T (ω, z) and initial spectrum )(0 ωS  (an initial spectrum has 

maximum at the zero frequency), the spectrum at distance z from the entrance to the non-linear 
medium S(ω,z) and the restored the initial spectrum )(0 ωS . 

 

  

Figure 2a. Evolution of function T (ω, z) at the 
different distance z from the entrance to the non-

linear medium (z2 ˃ z1) 

Figure 2b. Initial spectrum S0(ω) (the spectrum 
has its maximum at the zero frequency), the 
spectrum at the distance z from the entrance to the 
non-linear medium S(ω,z) and the restored the 
initial spectrum )(0 ωS . 

 
 Numerical simulations have shown quite good restoration of the initial spectrum at low 

frequencies. 

CONCLUCIONS 
The inverse problem in the distance-time domain and in the distance-frequency domain is 

considered. It is shown that the complete solution of the inverse problem in nonlinear acoustics is 
fundamentally impossible because of the discontinuities. However, at the initial stage of the intense 
acoustic noise propagation, the use of bispectra allows a good recovery of the initial spectrum in a 
sufficiently wide frequency range. 
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